材料科学
制作
联锁
选择性激光烧结
热电材料
纳米技术
弯曲半径
激光器
数码产品
箔法
灵活的显示器
柔性电子器件
Kapton
灵活性(工程)
基质(水族馆)
复合材料
弯曲
烧结
机械工程
聚酰亚胺
热导率
电气工程
光学
替代医学
病理
医学
物理
数学
海洋学
工程类
图层(电子)
统计
地质学
薄膜晶体管
作者
Yuan Tian,Isidro Florenciano,Heyi Xia,Qiyuan Li,Hasan Emre Baysal,Daiman Zhu,Eduardo Ramunni,Sebastian Meyers,Tzu‐Yi Yu,Kitty Baert,Tom Hauffman,Souhaila Nider,Berfu Göksel,Francisco Molina‐Lopez
标识
DOI:10.1002/adma.202307945
摘要
Abstract The emerging fields of wearables and the Internet of Things introduce the need for electronics and power sources with unconventional form factors: large area, customizable shape, and flexibility. Thermoelectric (TE) generators can power those systems by converting abundant waste heat into electricity, whereas the versatility of additive manufacturing suits heterogeneous form factors. Here, additive manufacturing of high‐performing flexible TEs is proposed. Maskless and large‐area patterning of Bi 2 Te 3 ‐based films is performed by laser powder bed fusion directly on plastic foil. Mechanical interlocking allows simultaneous patterning, sintering, and attachment of the films to the substrate without using organic binders that jeopardize the final performance. Material waste could be minimized by recycling the unexposed powder. The particular microstructure of the laser‐printed material renders the—otherwise brittle—Bi 2 Te 3 films highly flexible despite their high thickness. The films survive 500 extreme‐bending cycles to a 0.76 mm radius. Power factors above 1500 µW m −1 K −2 and a record‐low sheet resistance for flexible TEs of 0.4 Ω sq −1 are achieved, leading to unprecedented potential for power generation. This versatile fabrication route enables innovative implementations, such as cuttable arrays adapting to specific applications in self‐powered sensing, and energy harvesting from unusual scenarios like human skin and curved hot surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI