Artificial intelligence-enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes

F1得分 精确性和召回率 召回 医学 诊断准确性 糖尿病 支持向量机 内科学 接收机工作特性 人工智能 曲线下面积 心电图 机器学习 心脏病学 计算机科学 心理学 内分泌学 认知心理学
作者
Krzysztof Irlik,Hanadi Aldosari,Mirela Hendel,Hanna Kwiendacz,Julia Piaśnik,Justyna Kulpa,Paweł Ignacy,Sylwia Boczek,Mikołaj Herba,Kamil Kegler,Frans Coenen,Janusz Gumprecht,Yalin Zheng,Gregory Y.H. Lip,Uazman Alam,Katarzyna Nabrdalik
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3735738/v1
摘要

Abstract Background Cardiac autonomic neuropathy (CAN) is an important yet often overlooked complication of diabetes, which significantly increases the risk of cardiovascular (CV) events and mortality. Traditional diagnostic methods like CV autonomic function tests (CARTs) are laborious and rarely evaluated in clinical practice. This study aimed to develop and employ machine learning (ML) algorithms to analyze electrocardiogram (ECG) for the diagnosis of CAN. Methods We utilized motif and discord extraction techniques alongside Long Short-Term Memory (LSTM) networks to analyze 12-lead, 10 seconds ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the Support Vector Machine (SVM) classification model was evaluated using Ten-Cross Validation (TCV) with the following metrics accuracy, precision, recall, F1 score, and area under the ROC Curve (AUC). Results Among 205 patients (mean age 54 ± 17; 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95%CI 0.91-0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded best results with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95%CI 0.54-0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large-scale screening of CAN, particularly to identify definite/severe CAN where CV risk factor modification may be initiated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大曼完成签到,获得积分10
1秒前
1秒前
星辰大海应助Cici采纳,获得10
1秒前
小五完成签到 ,获得积分10
1秒前
罗氏集团发布了新的文献求助10
2秒前
打打应助王琨程采纳,获得30
2秒前
852应助kiki采纳,获得10
2秒前
善学以致用应助abc_xin采纳,获得10
4秒前
开朗芸遥完成签到,获得积分10
4秒前
可爱的函函应助hancahngxiao采纳,获得10
4秒前
enterdawn完成签到,获得积分10
4秒前
朴实觅波完成签到,获得积分10
5秒前
明眸发布了新的文献求助10
5秒前
6秒前
ccjjpp1243发布了新的文献求助10
6秒前
6秒前
Youngen完成签到,获得积分10
7秒前
7秒前
8秒前
飓风关注了科研通微信公众号
10秒前
来了发布了新的文献求助20
11秒前
wjw发布了新的文献求助10
11秒前
12秒前
14秒前
河鲸发布了新的文献求助50
16秒前
hancahngxiao发布了新的文献求助10
17秒前
17秒前
spark完成签到,获得积分10
19秒前
今后应助verbal2005采纳,获得10
19秒前
ccjjpp1243完成签到,获得积分10
19秒前
Ava应助淡定的勒采纳,获得10
21秒前
22秒前
Ran发布了新的文献求助10
24秒前
英姑应助MX001采纳,获得10
24秒前
25秒前
hancahngxiao完成签到,获得积分10
25秒前
ha完成签到,获得积分20
26秒前
26秒前
王琨程发布了新的文献求助30
27秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014