Artificial intelligence-enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes

F1得分 精确性和召回率 召回 医学 诊断准确性 糖尿病 支持向量机 内科学 接收机工作特性 人工智能 曲线下面积 心电图 机器学习 心脏病学 计算机科学 心理学 认知心理学 内分泌学
作者
Krzysztof Irlik,Hanadi Aldosari,Mirela Hendel,Hanna Kwiendacz,Julia Piaśnik,Justyna Kulpa,Paweł Ignacy,Sylwia Boczek,Mikołaj Herba,Kamil Kegler,Frans Coenen,Janusz Gumprecht,Yalin Zheng,Gregory Y.H. Lip,Uazman Alam,Katarzyna Nabrdalik
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3735738/v1
摘要

Abstract Background Cardiac autonomic neuropathy (CAN) is an important yet often overlooked complication of diabetes, which significantly increases the risk of cardiovascular (CV) events and mortality. Traditional diagnostic methods like CV autonomic function tests (CARTs) are laborious and rarely evaluated in clinical practice. This study aimed to develop and employ machine learning (ML) algorithms to analyze electrocardiogram (ECG) for the diagnosis of CAN. Methods We utilized motif and discord extraction techniques alongside Long Short-Term Memory (LSTM) networks to analyze 12-lead, 10 seconds ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the Support Vector Machine (SVM) classification model was evaluated using Ten-Cross Validation (TCV) with the following metrics accuracy, precision, recall, F1 score, and area under the ROC Curve (AUC). Results Among 205 patients (mean age 54 ± 17; 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95%CI 0.91-0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded best results with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95%CI 0.54-0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large-scale screening of CAN, particularly to identify definite/severe CAN where CV risk factor modification may be initiated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whatever应助luoshi采纳,获得10
1秒前
1秒前
科研通AI5应助徐徐采纳,获得10
2秒前
shouyu29应助MADKAI采纳,获得10
2秒前
shouyu29应助MADKAI采纳,获得10
2秒前
Lucas应助MADKAI采纳,获得10
2秒前
Vii应助MADKAI采纳,获得10
2秒前
李爱国应助MADKAI采纳,获得10
2秒前
李健应助MADKAI采纳,获得10
2秒前
烟花应助MADKAI采纳,获得20
2秒前
香蕉觅云应助MADKAI采纳,获得10
2秒前
科研通AI2S应助MADKAI采纳,获得10
2秒前
Singularity应助MADKAI采纳,获得10
2秒前
3秒前
3秒前
赘婿应助GGZ采纳,获得10
3秒前
阿盛完成签到,获得积分10
3秒前
3秒前
怕孤单的含羞草完成签到 ,获得积分10
4秒前
Muuu发布了新的文献求助10
4秒前
仁爱的乐枫完成签到,获得积分10
5秒前
5秒前
金润完成签到,获得积分10
6秒前
ZZ完成签到,获得积分10
6秒前
AteeqBaloch发布了新的文献求助10
7秒前
PaulLao完成签到,获得积分10
7秒前
7秒前
fleee发布了新的文献求助10
7秒前
7秒前
8秒前
Luyao发布了新的文献求助10
8秒前
海派Hi完成签到 ,获得积分10
8秒前
依依完成签到 ,获得积分10
9秒前
李健的小迷弟应助库外采纳,获得10
9秒前
yi完成签到 ,获得积分10
9秒前
kbj发布了新的文献求助10
9秒前
11秒前
佳言2009完成签到,获得积分10
12秒前
汉堡包应助漂亮的初蓝采纳,获得10
12秒前
hohokuz发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762