Dual-path dehazing network with spatial-frequency feature fusion

路径(计算) 计算机科学 特征(语言学) 人工智能 频域 块(置换群论) 模式识别(心理学) 空间频率 像素 计算机视觉 数学 物理 光学 计算机网络 语言学 哲学 几何学
作者
Li Wang,Hang Dong,Ruyu Li,Chao Zhu,Huibin Tao,Yu Guo,Fei Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:151: 110397-110397 被引量:5
标识
DOI:10.1016/j.patcog.2024.110397
摘要

With rapid improvement of deep learning, significant progress has been made in image dehazing, leading to favorable outcomes in many methods. However, a common challenge arises as most of these methods struggle to restore intricate details with vibrant colors in complex haze. In response to this challenge, we present a novel dual-path dehazing network with spatial-frequency feature fusion (DDN-SFF) to remove heterogeneous haze. The proposed dual-path network consists of a spatial-domain vanilla path and a frequency-domain frequency-guided path, effectively harnessing spatial-frequency knowledge. To maximize the versatility of the learned features, we introduce a relaxation dense feature fusion (RDFF) module in the vanilla path. This module can skillfully re-exploit features from non-adjacent levels and concurrently generate new features. In the frequency-guided path, we integrate the discrete wavelet transform (DWT) and introduce a frequency attention (FA) mechanism for the flexible handling of specific channels. More precisely, we deploy a channel attention (CA) and a dense feature fusion (DFF) module for low-frequency channels, whereas a pixel attention (PA) and a residual dense block (RDB) module are implemented for high-frequency channels. In summary, the deep dual-path network fuses sub-bands with specific spatial-frequency features, effectively eliminating the haze and restoring intricate details along with rich textures. Extensive experimental results demonstrate the superior performance of the proposed DDN-SFF over state-of-the-art dehazing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
七月完成签到,获得积分10
2秒前
3秒前
4秒前
华国锋应助啵子采纳,获得20
5秒前
沉静弘文发布了新的文献求助10
6秒前
熊健钧完成签到,获得积分20
7秒前
小刘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
纯真雁菱发布了新的文献求助10
8秒前
娃娃哈完成签到,获得积分10
9秒前
Lucas应助dingdign采纳,获得10
9秒前
李健的小迷弟应助baiyi采纳,获得10
10秒前
11秒前
搞怪元彤发布了新的文献求助10
11秒前
12秒前
12秒前
孙雪松完成签到 ,获得积分10
13秒前
14秒前
CipherSage应助小刘采纳,获得10
14秒前
李爱国应助lulu采纳,获得10
15秒前
江恋发布了新的文献求助10
15秒前
zhanglh123完成签到,获得积分10
16秒前
发过的烦得很完成签到,获得积分10
17秒前
哈哈哈发布了新的文献求助10
18秒前
sadwawa完成签到,获得积分10
18秒前
19秒前
搞怪元彤完成签到,获得积分10
19秒前
852发布了新的文献求助10
19秒前
20秒前
追寻听云完成签到,获得积分10
20秒前
20秒前
21秒前
Lucas应助iiiyyy采纳,获得10
21秒前
wxyshare举报roo0求助涉嫌违规
21秒前
22秒前
Daisy完成签到,获得积分10
22秒前
隐形曼青应助sadwawa采纳,获得10
23秒前
123发布了新的文献求助10
24秒前
Venus66689发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124206
求助须知:如何正确求助?哪些是违规求助? 4328520
关于积分的说明 13487475
捐赠科研通 4162916
什么是DOI,文献DOI怎么找? 2281925
邀请新用户注册赠送积分活动 1283217
关于科研通互助平台的介绍 1222406