Dual-path dehazing network with spatial-frequency feature fusion

对偶(语法数字) 路径(计算) 计算机科学 特征(语言学) 人工智能 融合 模式识别(心理学) 计算机视觉 算法 计算机网络 艺术 语言学 哲学 文学类
作者
Ke Wang,Hang Dong,Ruyu Li,Chao Zhu,Huibin Tao,Yu Guo,Fei Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:: 110397-110397 被引量:1
标识
DOI:10.1016/j.patcog.2024.110397
摘要

With rapid improvement of deep learning, significant progress has been made in image dehazing, leading to favorable outcomes in many methods. However, a common challenge arises as most of these methods struggle to restore intricate details with vibrant colors in complex haze. In response to this challenge, we present a novel dual-path dehazing network with spatial-frequency feature fusion (DDN-SFF) to remove heterogeneous haze. The proposed dual-path network consists of a spatial-domain vanilla path and a frequency-domain frequency-guided path, effectively harnessing spatial-frequency knowledge. To maximize the versatility of the learned features, we introduce a relaxation dense feature fusion (RDFF) module in the vanilla path. This module can skillfully re-exploit features from non-adjacent levels and concurrently generate new features. In the frequency-guided path, we integrate the discrete wavelet transform (DWT) and introduce a frequency attention (FA) mechanism for the flexible handling of specific channels. More precisely, we deploy a channel attention (CA) and a dense feature fusion (DFF) module for low-frequency channels, whereas a pixel attention (PA) and a residual dense block (RDB) module are implemented for high-frequency channels. In summary, the deep dual-path network fuses sub-bands with specific spatial-frequency features, effectively eliminating the haze and restoring intricate details along with rich textures. Extensive experimental results demonstrate the superior performance of the proposed DDN-SFF over state-of-the-art dehazing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助Nelson_Foo采纳,获得10
1秒前
戏言121发布了新的文献求助10
1秒前
科研小垃圾完成签到,获得积分10
2秒前
2秒前
踏实从雪完成签到 ,获得积分10
2秒前
3秒前
Gmute完成签到,获得积分20
4秒前
Xe发布了新的文献求助10
5秒前
崔崔XY完成签到 ,获得积分10
5秒前
在睡觉关注了科研通微信公众号
5秒前
5秒前
5秒前
CipherSage应助banbieshenlu采纳,获得20
5秒前
杳鸢应助戏言121采纳,获得10
5秒前
6秒前
6秒前
8秒前
alala发布了新的文献求助10
8秒前
李明发布了新的文献求助10
8秒前
9秒前
9秒前
余点发布了新的文献求助10
10秒前
Lv关闭了Lv文献求助
10秒前
10秒前
10秒前
10秒前
黄少年完成签到,获得积分20
10秒前
来碗面发布了新的文献求助10
11秒前
童豆发布了新的文献求助10
11秒前
crise发布了新的文献求助30
11秒前
12秒前
12秒前
南木发布了新的文献求助10
12秒前
whatever应助DAYDAY采纳,获得20
12秒前
暖风发布了新的文献求助10
12秒前
yyyyyggggg发布了新的文献求助10
13秒前
Nelson_Foo发布了新的文献求助10
13秒前
管海彪完成签到,获得积分10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180