Network-based analysis identifies potential therapeutic ingredients of Chinese medicines and their mechanisms toward lung cancer

成分 肺癌 活性成分 肺癌的治疗 癌症 中医药 疾病 相互作用体 医学 传统医学 计算生物学 药理学 肿瘤科 生物 病理 内科学 替代医学 生物化学 基因
作者
Mingrui Li,Gui-Yang Zhang,Qiang Tang,Kexing Xi,Yue Lin,Wei Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108292-108292 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108292
摘要

Lung cancer is one of the most common malignant tumors around the world, which has the highest mortality rate among all cancers. Traditional Chinese medicine (TCM) has attracted increased attention in the field of lung cancer treatment. However, the abundance of ingredients in Chinese medicines presents a challenge in identifying promising ingredient candidates and exploring their mechanisms for lung cancer treatment. In this work, two network-based algorithms were combined to calculate the network relationships between ingredient targets and lung cancer targets in the human interactome. Based on the enrichment analysis of the constructed disease module, key targets of lung cancer were identified. In addition, molecular docking and enrichment analysis of the overlapping targets between lung cancer and ingredients were performed to investigate the potential mechanisms of ingredient candidates against lung cancer. Ten potential ingredients against lung cancer were identified and they may have similar effect on the development of lung cancer. The results obtained from this study offered valuable insights and provided potential avenues for the development of novel drugs aimed at treating lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可发布了新的文献求助10
刚刚
Ava应助露似珍珠月似弓采纳,获得10
刚刚
monere应助露似珍珠月似弓采纳,获得10
刚刚
刚刚
刚刚
赵先森完成签到 ,获得积分10
刚刚
忧郁的菠萝完成签到,获得积分10
1秒前
坚强枫完成签到,获得积分10
2秒前
fifteen应助冰coke采纳,获得10
3秒前
dsdingding发布了新的文献求助10
3秒前
科研通AI2S应助静心采纳,获得10
3秒前
孤独的根号3完成签到,获得积分10
4秒前
4秒前
5秒前
8秒前
Axel完成签到,获得积分10
8秒前
9秒前
珊珊发布了新的文献求助20
9秒前
niwei发布了新的文献求助30
10秒前
中海完成签到,获得积分10
10秒前
852应助Qiang采纳,获得10
11秒前
砍柴人发布了新的文献求助10
11秒前
14秒前
14秒前
niwei完成签到,获得积分20
14秒前
情怀应助无限数据线采纳,获得30
16秒前
思源应助墨苏采纳,获得10
16秒前
萧水白应助慕倦采纳,获得10
18秒前
荔枝发布了新的文献求助50
19秒前
19秒前
lxh完成签到,获得积分10
23秒前
桐桐应助mirror采纳,获得30
23秒前
美好不言完成签到,获得积分20
23秒前
强强嘻嘻完成签到,获得积分10
24秒前
感动归尘应助xiaotaiyang采纳,获得10
30秒前
manman关注了科研通微信公众号
30秒前
文质彬彬完成签到,获得积分10
32秒前
32秒前
32秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240186
求助须知:如何正确求助?哪些是违规求助? 2885221
关于积分的说明 8237360
捐赠科研通 2553498
什么是DOI,文献DOI怎么找? 1381664
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 625009