亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration

神经影像学 判别式 人工智能 机器学习 计算机科学 人工神经网络 神经科学 心理学
作者
Xuexiong Luo,Jia Wu,Jian Yang,Hongyang Chen,Zhao Li,Hao Peng,Chuan Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3559-3572 被引量:19
标识
DOI:10.1109/tnnls.2023.3341802
摘要

The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is an increasing interest about utilizing artificial intelligence techniques to improve the efficiency of disorder diagnosis in recent years. However, these methods rely only on neuroimaging data for disorder diagnosis and do not explore the pathogenic mechanism behind the disorder or provide an interpretable result toward the diagnosis decision. Furthermore, the scarcity of medical data limits the performance of existing methods. As the hot application of graph neural networks (GNNs) in molecular graphs and drug discovery due to its strong graph-structured data learning ability, whether GNNs can also play a huge role in the field of brain disorder analysis. Thus, in this work, we innovatively model brain neuroimaging data into graph-structured data and propose knowledge distillation (KD) guided brain subgraph neural networks to extract discriminative subgraphs between patient and healthy brain graphs to explain which brain regions and abnormal functional connectivities cause the disorder. Specifically, we introduce the KD technique to transfer the knowledge of pretrained teacher model to guide brain subgraph neural networks training and alleviate the problem of insufficient training data. And these discriminative subgraphs are conducive to learn better brain graph-level representations for disorder prediction. We conduct abundant experiments on two functional magnetic resonance imaging datasets, i.e., Parkinson's disease (PD) and attention-deficit/hyperactivity disorder (ADHD), and experimental results well demonstrate the superiority of our method over other brain graph analysis methods for disorder prediction accuracy. The interpretable experimental results given by our method are consistent with corresponding medical research, which is encouraging to provide a potential for deeper brain disorder study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laura完成签到 ,获得积分10
2秒前
哈哈发布了新的文献求助20
3秒前
bkagyin应助GQ采纳,获得10
10秒前
qingsyxuan完成签到 ,获得积分10
11秒前
李健应助霸气涛采纳,获得10
14秒前
哟喂完成签到,获得积分10
17秒前
文静人达完成签到 ,获得积分10
22秒前
深情安青应助刘卓采纳,获得10
22秒前
Orange应助hh采纳,获得10
26秒前
灵巧的导师完成签到,获得积分10
27秒前
28秒前
28秒前
从容海完成签到 ,获得积分10
28秒前
29秒前
小二郎应助Liu采纳,获得10
30秒前
GQ发布了新的文献求助10
32秒前
32秒前
fymshh发布了新的文献求助10
33秒前
斩荆披棘发布了新的文献求助10
34秒前
科研通AI2S应助fymshh采纳,获得10
39秒前
43秒前
43秒前
养花低手完成签到 ,获得积分10
46秒前
XLC发布了新的文献求助10
47秒前
美丽的若云完成签到 ,获得积分10
48秒前
roe完成签到 ,获得积分10
51秒前
张泽林完成签到 ,获得积分10
58秒前
May完成签到 ,获得积分10
59秒前
斯文败类应助XLC采纳,获得10
1分钟前
XLC完成签到,获得积分10
1分钟前
搜集达人应助啦啦采纳,获得10
1分钟前
1分钟前
1分钟前
义气的水蓝完成签到,获得积分10
1分钟前
1分钟前
xulin完成签到 ,获得积分10
1分钟前
安渝完成签到 ,获得积分10
1分钟前
袁青寒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650633
求助须知:如何正确求助?哪些是违规求助? 4781144
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572317
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332