Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration

神经影像学 判别式 人工智能 机器学习 计算机科学 人工神经网络 神经科学 心理学
作者
Xuexiong Luo,Jia Wu,Jian Yang,Hongyang Chen,Zhao Li,Hao Peng,Chuan Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2023.3341802
摘要

The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is an increasing interest about utilizing artificial intelligence techniques to improve the efficiency of disorder diagnosis in recent years. However, these methods rely only on neuroimaging data for disorder diagnosis and do not explore the pathogenic mechanism behind the disorder or provide an interpretable result toward the diagnosis decision. Furthermore, the scarcity of medical data limits the performance of existing methods. As the hot application of graph neural networks (GNNs) in molecular graphs and drug discovery due to its strong graph-structured data learning ability, whether GNNs can also play a huge role in the field of brain disorder analysis. Thus, in this work, we innovatively model brain neuroimaging data into graph-structured data and propose knowledge distillation (KD) guided brain subgraph neural networks to extract discriminative subgraphs between patient and healthy brain graphs to explain which brain regions and abnormal functional connectivities cause the disorder. Specifically, we introduce the KD technique to transfer the knowledge of pretrained teacher model to guide brain subgraph neural networks training and alleviate the problem of insufficient training data. And these discriminative subgraphs are conducive to learn better brain graph-level representations for disorder prediction. We conduct abundant experiments on two functional magnetic resonance imaging datasets, i.e., Parkinson's disease (PD) and attention-deficit/hyperactivity disorder (ADHD), and experimental results well demonstrate the superiority of our method over other brain graph analysis methods for disorder prediction accuracy. The interpretable experimental results given by our method are consistent with corresponding medical research, which is encouraging to provide a potential for deeper brain disorder study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LJpoqZ完成签到,获得积分20
刚刚
1秒前
粗犷的采白完成签到,获得积分10
2秒前
4秒前
啦啦啦发布了新的文献求助10
5秒前
5秒前
7秒前
精明秋发布了新的文献求助10
8秒前
尛瞐慶成发布了新的文献求助10
9秒前
10秒前
mls驳回了田様应助
10秒前
清水发布了新的文献求助10
10秒前
11秒前
13秒前
桐桐应助啦啦啦采纳,获得10
13秒前
勤劳无剑完成签到 ,获得积分10
14秒前
饭饭完成签到 ,获得积分10
14秒前
慕青应助小小sci采纳,获得10
17秒前
zhanghua完成签到,获得积分10
17秒前
Ava应助zty采纳,获得10
18秒前
顶刊_发布了新的文献求助10
18秒前
NZH发布了新的文献求助10
20秒前
啦啦啦完成签到,获得积分10
21秒前
22秒前
阿褚完成签到 ,获得积分10
23秒前
不安的松完成签到 ,获得积分10
24秒前
24秒前
华仔应助cyr采纳,获得10
27秒前
27秒前
小只发布了新的文献求助10
27秒前
27秒前
顶刊_完成签到,获得积分10
28秒前
这里是小豪完成签到,获得积分10
29秒前
清水完成签到,获得积分10
32秒前
木子发布了新的文献求助10
32秒前
隐形曼青应助酷炫思天采纳,获得10
33秒前
NZH发布了新的文献求助10
33秒前
39秒前
40秒前
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812311
关于积分的说明 7895133
捐赠科研通 2471181
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086