已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration

神经影像学 判别式 人工智能 机器学习 计算机科学 人工神经网络 神经科学 心理学
作者
Xuexiong Luo,Jia Wu,Jian Yang,Hongyang Chen,Zhao Li,Hao Peng,Chuan Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3559-3572 被引量:19
标识
DOI:10.1109/tnnls.2023.3341802
摘要

The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is an increasing interest about utilizing artificial intelligence techniques to improve the efficiency of disorder diagnosis in recent years. However, these methods rely only on neuroimaging data for disorder diagnosis and do not explore the pathogenic mechanism behind the disorder or provide an interpretable result toward the diagnosis decision. Furthermore, the scarcity of medical data limits the performance of existing methods. As the hot application of graph neural networks (GNNs) in molecular graphs and drug discovery due to its strong graph-structured data learning ability, whether GNNs can also play a huge role in the field of brain disorder analysis. Thus, in this work, we innovatively model brain neuroimaging data into graph-structured data and propose knowledge distillation (KD) guided brain subgraph neural networks to extract discriminative subgraphs between patient and healthy brain graphs to explain which brain regions and abnormal functional connectivities cause the disorder. Specifically, we introduce the KD technique to transfer the knowledge of pretrained teacher model to guide brain subgraph neural networks training and alleviate the problem of insufficient training data. And these discriminative subgraphs are conducive to learn better brain graph-level representations for disorder prediction. We conduct abundant experiments on two functional magnetic resonance imaging datasets, i.e., Parkinson's disease (PD) and attention-deficit/hyperactivity disorder (ADHD), and experimental results well demonstrate the superiority of our method over other brain graph analysis methods for disorder prediction accuracy. The interpretable experimental results given by our method are consistent with corresponding medical research, which is encouraging to provide a potential for deeper brain disorder study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助激昂的吐司采纳,获得10
2秒前
伶俐的鸿煊完成签到,获得积分10
2秒前
hhh完成签到 ,获得积分10
4秒前
答辩完成签到 ,获得积分10
4秒前
temaxs发布了新的文献求助10
5秒前
Angora发布了新的文献求助10
7秒前
CodeCraft应助文艺的小之采纳,获得10
11秒前
sunhao发布了新的文献求助10
11秒前
11秒前
13秒前
15秒前
17秒前
ww完成签到,获得积分10
18秒前
落山姬完成签到,获得积分10
18秒前
19秒前
乐乐应助nowss采纳,获得10
22秒前
北克完成签到 ,获得积分10
25秒前
Re完成签到 ,获得积分10
26秒前
27秒前
zcm完成签到,获得积分10
27秒前
28秒前
懦弱的羽毛完成签到,获得积分10
29秒前
陶醉的烤鸡完成签到 ,获得积分10
33秒前
呆二龙完成签到 ,获得积分10
34秒前
34秒前
34秒前
36秒前
Shelly完成签到,获得积分10
36秒前
眼睛大毛衣应助nowss采纳,获得10
36秒前
苏子墨完成签到,获得积分10
37秒前
zoe发布了新的文献求助10
38秒前
严好香完成签到 ,获得积分10
40秒前
hy完成签到 ,获得积分10
40秒前
英俊的铭应助薛雨佳采纳,获得10
42秒前
充电宝应助Pluto采纳,获得10
43秒前
Sunsets完成签到 ,获得积分10
43秒前
xylinwc发布了新的文献求助10
43秒前
茨橙发布了新的文献求助10
47秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611743
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14889839
捐赠科研通 4726779
什么是DOI,文献DOI怎么找? 2545886
邀请新用户注册赠送积分活动 1510326
关于科研通互助平台的介绍 1473221