Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration

神经影像学 判别式 人工智能 机器学习 计算机科学 人工神经网络 神经科学 心理学
作者
Xuexiong Luo,Jia Wu,Jian Yang,Hongyang Chen,Zhao Li,Hao Peng,Chuan Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3559-3572 被引量:4
标识
DOI:10.1109/tnnls.2023.3341802
摘要

The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is an increasing interest about utilizing artificial intelligence techniques to improve the efficiency of disorder diagnosis in recent years. However, these methods rely only on neuroimaging data for disorder diagnosis and do not explore the pathogenic mechanism behind the disorder or provide an interpretable result toward the diagnosis decision. Furthermore, the scarcity of medical data limits the performance of existing methods. As the hot application of graph neural networks (GNNs) in molecular graphs and drug discovery due to its strong graph-structured data learning ability, whether GNNs can also play a huge role in the field of brain disorder analysis. Thus, in this work, we innovatively model brain neuroimaging data into graph-structured data and propose knowledge distillation (KD) guided brain subgraph neural networks to extract discriminative subgraphs between patient and healthy brain graphs to explain which brain regions and abnormal functional connectivities cause the disorder. Specifically, we introduce the KD technique to transfer the knowledge of pretrained teacher model to guide brain subgraph neural networks training and alleviate the problem of insufficient training data. And these discriminative subgraphs are conducive to learn better brain graph-level representations for disorder prediction. We conduct abundant experiments on two functional magnetic resonance imaging datasets, i.e., Parkinson's disease (PD) and attention-deficit/hyperactivity disorder (ADHD), and experimental results well demonstrate the superiority of our method over other brain graph analysis methods for disorder prediction accuracy. The interpretable experimental results given by our method are consistent with corresponding medical research, which is encouraging to provide a potential for deeper brain disorder study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gigi完成签到,获得积分10
刚刚
漠池完成签到,获得积分10
1秒前
2秒前
苏利文完成签到,获得积分20
2秒前
奋斗的菲鹰完成签到,获得积分10
3秒前
Jeriu发布了新的文献求助10
3秒前
佳佳应助Hexagram采纳,获得10
4秒前
无奈的冷之完成签到,获得积分10
4秒前
wanci应助追寻松采纳,获得10
5秒前
uui完成签到,获得积分10
7秒前
8秒前
fd163c发布了新的文献求助20
8秒前
Jeriu完成签到,获得积分10
9秒前
lalalacai应助xx采纳,获得10
9秒前
852应助列苑苑采纳,获得10
10秒前
小小歌2015完成签到,获得积分10
12秒前
Wwyy发布了新的文献求助10
12秒前
hhhhhh应助li采纳,获得10
12秒前
YamDaamCaa举报NikiJu求助涉嫌违规
12秒前
max完成签到 ,获得积分10
12秒前
12秒前
13秒前
天天快乐应助八九采纳,获得10
13秒前
zhaohl完成签到,获得积分10
15秒前
鱼雁完成签到,获得积分20
15秒前
杨自强发布了新的文献求助10
16秒前
17秒前
皮凡完成签到,获得积分10
18秒前
MoriZhang完成签到,获得积分10
19秒前
moumou应助体贴绮露采纳,获得10
19秒前
zero完成签到,获得积分10
19秒前
nlix发布了新的文献求助10
20秒前
懒顾发布了新的文献求助10
20秒前
扬帆完成签到,获得积分20
21秒前
22秒前
郑郑发布了新的文献求助10
22秒前
JamesPei应助坦率的香烟采纳,获得10
23秒前
zero发布了新的文献求助10
23秒前
王wangxuanting完成签到,获得积分20
23秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202