亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge Distillation Guided Interpretable Brain Subgraph Neural Networks for Brain Disorder Exploration

神经影像学 判别式 人工智能 机器学习 计算机科学 人工神经网络 神经科学 心理学
作者
Xuexiong Luo,Jia Wu,Jian Yang,Hongyang Chen,Zhao Li,Hao Peng,Chuan Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 3559-3572 被引量:19
标识
DOI:10.1109/tnnls.2023.3341802
摘要

The human brain is a highly complex neurological system that has been the subject of continuous exploration by scientists. With the help of modern neuroimaging techniques, there has been significant progress made in brain disorder analysis. There is an increasing interest about utilizing artificial intelligence techniques to improve the efficiency of disorder diagnosis in recent years. However, these methods rely only on neuroimaging data for disorder diagnosis and do not explore the pathogenic mechanism behind the disorder or provide an interpretable result toward the diagnosis decision. Furthermore, the scarcity of medical data limits the performance of existing methods. As the hot application of graph neural networks (GNNs) in molecular graphs and drug discovery due to its strong graph-structured data learning ability, whether GNNs can also play a huge role in the field of brain disorder analysis. Thus, in this work, we innovatively model brain neuroimaging data into graph-structured data and propose knowledge distillation (KD) guided brain subgraph neural networks to extract discriminative subgraphs between patient and healthy brain graphs to explain which brain regions and abnormal functional connectivities cause the disorder. Specifically, we introduce the KD technique to transfer the knowledge of pretrained teacher model to guide brain subgraph neural networks training and alleviate the problem of insufficient training data. And these discriminative subgraphs are conducive to learn better brain graph-level representations for disorder prediction. We conduct abundant experiments on two functional magnetic resonance imaging datasets, i.e., Parkinson's disease (PD) and attention-deficit/hyperactivity disorder (ADHD), and experimental results well demonstrate the superiority of our method over other brain graph analysis methods for disorder prediction accuracy. The interpretable experimental results given by our method are consistent with corresponding medical research, which is encouraging to provide a potential for deeper brain disorder study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
阿亮完成签到,获得积分10
8秒前
ding应助石榴汁的书采纳,获得10
18秒前
20秒前
阿亮发布了新的文献求助20
21秒前
研友_VZG7GZ应助吴浣采纳,获得10
27秒前
27秒前
Orange应助Dreamchaser采纳,获得10
35秒前
51秒前
科研通AI6应助tracer526采纳,获得10
1分钟前
1分钟前
mc小胖羊发布了新的文献求助10
1分钟前
科研通AI6应助tracer526采纳,获得10
1分钟前
1分钟前
冷傲迎梅完成签到 ,获得积分10
1分钟前
Jasper应助tracer526采纳,获得10
1分钟前
mc小胖羊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
罗伊黄发布了新的文献求助10
1分钟前
xiaoyu完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
火星上念梦完成签到,获得积分10
2分钟前
2分钟前
2分钟前
kkm完成签到,获得积分10
2分钟前
2分钟前
丘比特应助kkm采纳,获得10
2分钟前
yys10l完成签到,获得积分10
2分钟前
yys完成签到,获得积分10
2分钟前
mc小胖羊发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助tracer526采纳,获得10
2分钟前
浮游应助sherry采纳,获得10
2分钟前
3分钟前
3分钟前
tracer526发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418317
求助须知:如何正确求助?哪些是违规求助? 4534007
关于积分的说明 14143021
捐赠科研通 4450303
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432905
关于科研通互助平台的介绍 1410263