The prevalence and risk of depression in aged COVID‐19 survivors: a bibliometric and meta‐analysis

荟萃分析 出版偏见 萧条(经济学) 漏斗图 医学 优势比 2019年冠状病毒病(COVID-19) 内科学 人口学 疾病 传染病(医学专业) 社会学 经济 宏观经济学
作者
Yangguang Lu,J. Lou,Bohuai Yu,Yiran Bu,Feitian Ni,Di Lu
出处
期刊:Psychogeriatrics [Wiley]
卷期号:24 (2): 458-472
标识
DOI:10.1111/psyg.13057
摘要

Abstract To explore depression prevalence and related risk factors among elderly coronavirus disease 2019 (COVID‐19) survivors, while also evaluating research characteristics. We searched Web of Science, PubMed, Embase, Scopus, CNKI and Wanfang Data for studies that reported COVID‐19 and depression in older adults. ‘Bibliometrix’ facilitated bibliometric analysis and information visualisation. Random‐effects models merged depression prevalence and relevant risks. Publication bias and its impact were examined using funnel plots, Begg's test, Egger's linear regression, and trim‐and‐fill method. Meta‐regression, bubble plots, and Baujat plots probed heterogeneity. Sensitivity analysis applied the leave‐one‐out method. The study is registered with PROSPERO, CRD42023417706. The bibliometric analysis comprised 138 studies. Publication frequency peaked in the US, China, and Italy, reflecting significant growth. The meta‐analysis comprised 43 studies. Elderly COVID‐19 patients exhibit 28.33% depression prevalence (95% CI: 21.24–35.97). Severe cases (43.91%, 95% CI: 32.28–55.88) experienced higher depression prevalence than mild cases (16.45%, 95% CI: 11.92–21.50). Sex had no depression prevalence impact based on bubble plots. Notably, depression risk did not significantly differ between elderly and young COVID‐19 patients (odds ratio (OR) = 1.1808, 95% CI: 0.7323–1.9038). However, COVID‐19 infection emerged as a substantial elderly depression risk factor (OR = 1.8521, 95% CI: 1.2877–2.6639). Sensitivity analysis confirmed result robustness. Elderly COVID‐19 survivors are likely to develop depression symptoms with regional variations. Severe cases are associated with heightened depression prevalence. COVID‐19 infection stands out as a key elderly depression risk factor, while sex does not influence prevalence. The field's expansion necessitates sustained collaboration and extensive research endeavours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
快乐小白菜应助shenzhou9采纳,获得10
1秒前
无花果应助aertom采纳,获得10
1秒前
小田发布了新的文献求助10
1秒前
sankumao发布了新的文献求助30
1秒前
奋斗的盼柳完成签到 ,获得积分10
2秒前
3秒前
Jasper应助handsomecat采纳,获得10
3秒前
3秒前
李雪完成签到,获得积分10
4秒前
4秒前
sv发布了新的文献求助10
6秒前
小田完成签到,获得积分10
6秒前
茶茶完成签到,获得积分20
6秒前
苏兴龙完成签到,获得积分10
6秒前
坚强的亦云-333完成签到,获得积分10
6秒前
Ava应助dan1029采纳,获得10
7秒前
7秒前
7秒前
奶糖最可爱完成签到,获得积分10
8秒前
8秒前
mojomars发布了新的文献求助10
9秒前
幽壑之潜蛟应助茶茶采纳,获得10
9秒前
10秒前
10秒前
10秒前
迅速海云完成签到,获得积分10
10秒前
sjxx发布了新的文献求助10
10秒前
10秒前
乐乐应助Rachel采纳,获得10
11秒前
11秒前
11秒前
天天快乐应助孤独的珩采纳,获得10
12秒前
帅气鹭洋发布了新的文献求助20
12秒前
13秒前
孙悦发布了新的文献求助10
13秒前
知性的绮兰完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794