磺酸盐
全氟辛烷
环境化学
全氟辛酸
化学
环境科学
有机化学
钠
作者
Jie Li,Xinlei Li,Rui An,Limin Duan,Guoqiang Wang
标识
DOI:10.1016/j.envres.2024.118111
摘要
Per- and poly-fluoroalkyl substances (PFASs) are artificial chemicals with broad commercial and industrial applications. Many studies about PFASs have been conducted in densely industrial and populated regions. However, fewer studies have focused on the PFASs' status in a typical arid region. Here, we investigated 30 legacy and emerging PFASs in surface water from the mainstream and tributaries of the Dahei River. Our results revealed that total PFASs concentrations (∑30PFASs) in water ranged from 3.13 to 289.1 ng/L (mean: 25.40 ng/L). Perfluorooctanoic acid (PFOA) had the highest mean concentration of 2.44 ng/L with a 100% detection frequency (DF), followed by perfluorohexanoic acid (PFHxA) (mean concentration: 1.34 ng/L, DF: 59.26%). Also, perfluorohexane sulfonate (DF: 44.44%), perfluorobutane sulfonate (DF: 88.89%), and perfluorooctane sulfonate (PFOS) (DF: 92.59%) had mean concentrations of 12.94, 2.00, and 1.05 ng/L, respectively. Source apportionment through ratio analysis and principal component analysis-multiple linear regression analysis showed that treated or untreated sewage, aqueous film-forming foam, degradation of precursors, and fluoropolymer production were the primary sources. The PFOS alternatives were more prevalent than those of PFOA. Conductivity, total phosphorus, and chlorophyll a positively correlated with Σ30PFASs and total perfluoroalkane sulfonates concentrations. Furthermore, ecological risk assessment showed that more attention should be paid to perfluorooctadecanoic acid, perfluorohexadecanoic acid, perfluorooctane sulfonate, perfluorohexane sulfonate, and (6:2 and 6:2/8:2) polyfluoroalkyl phosphate mono- and di-esters. The mass load of PFASs to the Yellow River was 1.28 kg/year due to the low annual runoff in the Dahei River in the arid region. This study provides baseline data for PFASs in the Dahei River that can aid in the development of effective management strategies for controlling PFASs pollution in typical arid regions in China.
科研通智能强力驱动
Strongly Powered by AbleSci AI