代谢组
生物
无氧呼吸
细菌
还原酶
生物化学
基因组
新陈代谢
厌氧菌
酶
微生物学
基因
遗传学
代谢物
作者
Alexander S. Little,Isaac T. Younker,Matthew S. Schechter,Paola Nol Bernardino,Raphaël Méheust,Joshua Stemczynski,Kaylie Scorza,Michael W. Mullowney,Deepti Sharan,Emily Waligurski,Rita C. Smith,Ramanujam Ramanswamy,William Leiter,David Morán,Mary McMillin,Matthew A. Odenwald,Anthony T. Iavarone,Ashley M. Sidebottom,Anitha Sundararajan,Eric G. Pamer,A. Murat Eren,S.H. Light
出处
期刊:Nature microbiology
日期:2024-01-04
卷期号:9 (1): 55-69
被引量:14
标识
DOI:10.1038/s41564-023-01560-2
摘要
Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
科研通智能强力驱动
Strongly Powered by AbleSci AI