Transformer-Based Person Re-Identification: A Comprehensive Review

计算机科学 变压器 稳健性(进化) 可扩展性 人工智能 风险分析(工程) 数据科学 工程类 医学 生物化学 化学 电压 数据库 电气工程 基因
作者
Prodip Kumar Sarker,Qingjie Zhao,Md. Kamal Uddin
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:4
标识
DOI:10.1109/tiv.2024.3350669
摘要

In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
刚刚
Akim应助Suxiao采纳,获得10
刚刚
HJ完成签到,获得积分10
1秒前
丰知然应助肉脸小鱼采纳,获得10
1秒前
李健应助元海云采纳,获得10
1秒前
思源应助Petalee采纳,获得10
2秒前
韩小花完成签到,获得积分10
2秒前
哭泣幼珊完成签到,获得积分10
2秒前
七柚发布了新的文献求助10
2秒前
大个应助白开水采纳,获得10
2秒前
hahah完成签到,获得积分20
3秒前
劲秉应助怡然的迎波采纳,获得10
3秒前
情怀应助你快睡吧采纳,获得10
3秒前
luoliping发布了新的文献求助10
3秒前
陌陌发布了新的文献求助10
4秒前
5秒前
科研轮回完成签到,获得积分10
5秒前
手机应助聪慧的谷雪采纳,获得10
5秒前
wy.he应助zhoull采纳,获得10
6秒前
7秒前
7秒前
hfhfj完成签到,获得积分20
7秒前
苏苏完成签到,获得积分10
7秒前
赘婿应助紧张的幼蓉采纳,获得10
8秒前
嘻嘻哈哈完成签到,获得积分10
8秒前
8秒前
10秒前
天天快乐应助白方明采纳,获得10
11秒前
11秒前
许光汉完成签到,获得积分10
11秒前
Petalee完成签到,获得积分10
11秒前
Hello应助why采纳,获得10
12秒前
cheng完成签到 ,获得积分10
12秒前
乐乐乐乐乐乐应助luoliping采纳,获得10
13秒前
七七发布了新的文献求助10
13秒前
amaoaaa完成签到,获得积分20
14秒前
香蕉觅云应助哭泣幼珊采纳,获得10
15秒前
trwcywing完成签到,获得积分10
15秒前
mao完成签到,获得积分10
15秒前
良辰应助爱听歌烨华采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296296
求助须知:如何正确求助?哪些是违规求助? 2932217
关于积分的说明 8455244
捐赠科研通 2604679
什么是DOI,文献DOI怎么找? 1421883
科研通“疑难数据库(出版商)”最低求助积分说明 661255
邀请新用户注册赠送积分活动 644218