A deep learning-based Monte Carlo simulation scheme for stochastic differential equations driven by fractional Brownian motion

分数布朗运动 随机微分方程 蒙特卡罗方法 分位数 应用数学 计算机科学 数学优化 搭配(遥感) 布朗运动 统计物理学 数学 物理 机器学习 计量经济学 统计
作者
Fei Gao,Cornelis W. Oosterlee,Jiangshe Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:574: 127245-127245 被引量:2
标识
DOI:10.1016/j.neucom.2024.127245
摘要

Stochastic differential equations (SDEs) are widely used models to describe the evolution of stochastic processes. Among them, SDEs driven by fractional Brownian motion (fBm) have been shown to be capable of describing systems with temporal dependencies. In this paper, we develop a neural network based Monte Carlo methodology in which we can efficiently simulate SDEs that are governed by fBm. Particularly, we focus on large time step simulations. A property of fBm that complicates the development of such Monte Carlo schemes is the long-range temporal correlation. To this end, we build the network based on the encoder–decoder framework and employ the attention mechanism to learn the temporal relationships in the historical paths of such SDEs. In addition, a loss function based on the quantile loss is used, where the quantile levels to be predicted are determined by means of the stochastic collocation method. Experimental results show that this kind of loss function is superior to conventional loss functions in terms of solution accuracy, and the resulting scheme can learn and simulate SDEs driven by fBm accurately and highly efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助cccccttt采纳,获得10
刚刚
刚刚
PXY完成签到,获得积分10
1秒前
啦啦啦完成签到,获得积分10
1秒前
2秒前
Mayeleven发布了新的文献求助30
4秒前
沉默丹亦发布了新的文献求助30
4秒前
绿兔子完成签到,获得积分10
5秒前
5秒前
完美世界应助66采纳,获得30
6秒前
yafei完成签到 ,获得积分10
6秒前
现实的宝马完成签到,获得积分10
7秒前
我不吃牛肉完成签到,获得积分10
8秒前
9秒前
程传勇完成签到,获得积分10
9秒前
11111111111完成签到,获得积分10
9秒前
37完成签到,获得积分10
12秒前
小夫应助百岁小咪采纳,获得10
16秒前
小帅完成签到,获得积分10
16秒前
白白发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
18秒前
zq应助科研通管家采纳,获得10
18秒前
zq应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224