Path planning of unmanned vehicles based on adaptive particle swarm optimization algorithm

避障 计算机科学 运动规划 粒子群优化 避碰 障碍物 路径(计算) 算法 数学优化 人工智能 碰撞 移动机器人 数学 机器人 程序设计语言 计算机安全 政治学 法学
作者
Jiale Zhao,Chaoshuo Deng,Huanhuan Yu,Hansheng Fei,Deshun Li
出处
期刊:Computer Communications [Elsevier]
卷期号:216: 112-129 被引量:8
标识
DOI:10.1016/j.comcom.2023.12.040
摘要

Path planning technology is the basis of autonomous driving of unmanned vehicles. However, there are some problems in the traditional path planning technology. For example, high-quality global paths can't be generated quickly; Lacking of security verification ability; The performance of dynamic obstacle avoidance is poor. Therefore, this paper proposes a path planning method of unmanned vehicles based on adaptive particle swarm optimization algorithm (APSO). Firstly, a map simplification strategy (MSS) is proposed. The grid map is preprocessed by map simplification strategy to reduce the search space and time of path planning algorithm; Secondly, an APSO algorithm is proposed. The algorithm coordinates the search of particles through three adaptive factors and Levy flight strategy. Then, a security checking strategy is proposed. Security checking strategy can be used to verify the safety of global path; Finally, a dynamic obstacle avoidance strategy based on behavior is proposed. Vehicles can independently analyze the types of collision and adopt corresponding obstacle avoidance strategies. The simulation results show that MSS-APSO algorithm and APSO algorithm surpass original algorithms and comparison algorithms; MSS-APSO algorithm has strong applicability in real map environment; The obstacle avoidance strategy has great obstacle avoidance ability and real-time performance; The map simplification strategy can improve iterations of the algorithm and quality of the global path.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
su完成签到 ,获得积分10
1秒前
平淡的依白完成签到,获得积分20
1秒前
xinchengzhu关注了科研通微信公众号
1秒前
爱静静应助tao采纳,获得10
2秒前
iNk应助Rebekah采纳,获得10
2秒前
HopeStar完成签到,获得积分10
3秒前
树叶有专攻完成签到,获得积分10
3秒前
3秒前
田様应助Mia采纳,获得20
3秒前
所所应助吃点红糖馒头采纳,获得10
3秒前
今后应助PSCs采纳,获得10
3秒前
4秒前
duguqiubai4发布了新的文献求助10
4秒前
独特的沛凝完成签到,获得积分10
6秒前
思源应助淇淇怪怪采纳,获得10
6秒前
领导范儿应助徐慕源采纳,获得10
6秒前
听粥完成签到,获得积分10
7秒前
高高迎蓉完成签到,获得积分10
7秒前
豆花完成签到,获得积分10
7秒前
SYLH应助风趣的无剑采纳,获得10
7秒前
悲伤水凝胶完成签到,获得积分10
7秒前
鲸鱼完成签到,获得积分10
9秒前
huangqinxue完成签到,获得积分10
9秒前
10秒前
10秒前
Tina完成签到,获得积分10
10秒前
电催化皮皮完成签到,获得积分10
10秒前
大模型应助阿蒙采纳,获得10
11秒前
duguqiubai4完成签到,获得积分10
11秒前
12秒前
meta完成签到,获得积分10
12秒前
大饼完成签到,获得积分10
13秒前
爆米花应助WJM采纳,获得10
13秒前
xiexuqin完成签到,获得积分10
13秒前
13秒前
silentJeremy发布了新的文献求助200
14秒前
JonyiCheng完成签到,获得积分10
14秒前
科研通AI5应助典雅又夏采纳,获得10
15秒前
风趣的无剑完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678