Mechanical reliable, NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life

电解质 材料科学 极限抗拉强度 离子电导率 超级电容器 电导率 自愈水凝胶 复合材料 化学工程 电容 化学 高分子化学 电极 物理化学 工程类
作者
Tengjia Gao,Na Li,Yang Yang,Jing Li,Peng Ji,Yunlong Zhou,Jianxiong Xu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:92: 63-73 被引量:29
标识
DOI:10.1016/j.jechem.2023.12.038
摘要

Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors (ZICs) due to their high conductivity, good safety, and flexibility. However, freezing of electrolytes at low temperature (subzero) leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs. Besides, the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device. Herein, a Zn2+ and Li+ co-doped, polypyrrole-dopamine decorated Sb2S3 incorporated, and polyvinyl alcohol/ poly(N-(2-hydroxyethyl) acrylamide) double-network hydrogel electrolyte is constructed with favorable mechanical reliability, anti-freezing, and self-healing ability. In addition, it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m−1 at 20 and −30 °C, respectively, and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%, together with fracture energy of 5.14 MJ m−3. Notably, the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination, while regaining 83% of its tensile strain and almost 100% of its ionic conductivity during −30–60 °C. Moreover, ZICs coupled with this hydrogel electrolyte not only show a wide voltage window (up to 2 V), but also provide high energy density of 230 Wh kg−1 at power density of 500 W kg−1 with a capacity retention of 86.7% after 20,000 cycles under 20 °C. Furthermore, the ZICs are able to retain excellent capacity even under various mechanical deformation at −30 °C. This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑾瑜完成签到,获得积分10
1秒前
文小杰完成签到,获得积分10
1秒前
山月完成签到,获得积分10
2秒前
CodeCraft应助研友_LOK59L采纳,获得10
2秒前
2秒前
3秒前
欣慰妙海完成签到 ,获得积分20
3秒前
CodeCraft应助zhaopeipei采纳,获得10
3秒前
LIUYONG发布了新的文献求助10
4秒前
lin发布了新的文献求助10
6秒前
7秒前
九湖夷上完成签到 ,获得积分10
7秒前
噼里啪啦完成签到 ,获得积分10
8秒前
大个应助hahaha123213123采纳,获得30
8秒前
8秒前
惊天大幂幂完成签到,获得积分10
8秒前
英姑应助Fang Xianxin采纳,获得10
9秒前
宋老师发布了新的文献求助30
9秒前
王洋完成签到,获得积分10
10秒前
lw777完成签到,获得积分20
10秒前
慢慢完成签到,获得积分10
10秒前
11秒前
靖123456发布了新的文献求助10
11秒前
拓跋箴完成签到,获得积分10
11秒前
彭于晏应助zy采纳,获得10
12秒前
精明玲完成签到 ,获得积分10
13秒前
13秒前
乐乐完成签到,获得积分10
14秒前
VirSnorlax完成签到,获得积分10
14秒前
SciGPT应助LL采纳,获得10
14秒前
妖孽宇发布了新的文献求助10
15秒前
aa完成签到,获得积分20
15秒前
aaaa完成签到,获得积分10
15秒前
马香芦完成签到,获得积分10
16秒前
西红柿完成签到,获得积分10
17秒前
18秒前
懵懂的冬灵完成签到,获得积分10
18秒前
碧蓝可仁完成签到 ,获得积分10
19秒前
王拉拉完成签到 ,获得积分10
19秒前
西西完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029