Mechanical reliable, NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life

电解质 材料科学 极限抗拉强度 离子电导率 超级电容器 电导率 自愈水凝胶 复合材料 化学工程 电容 化学 高分子化学 电极 工程类 物理化学
作者
Tengjia Gao,Na Li,Yang Yang,Jing Li,Peng Ji,Yunlong Zhou,Jianxiong Xu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:92: 63-73 被引量:40
标识
DOI:10.1016/j.jechem.2023.12.038
摘要

Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors (ZICs) due to their high conductivity, good safety, and flexibility. However, freezing of electrolytes at low temperature (subzero) leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs. Besides, the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device. Herein, a Zn2+ and Li+ co-doped, polypyrrole-dopamine decorated Sb2S3 incorporated, and polyvinyl alcohol/ poly(N-(2-hydroxyethyl) acrylamide) double-network hydrogel electrolyte is constructed with favorable mechanical reliability, anti-freezing, and self-healing ability. In addition, it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m−1 at 20 and −30 °C, respectively, and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%, together with fracture energy of 5.14 MJ m−3. Notably, the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination, while regaining 83% of its tensile strain and almost 100% of its ionic conductivity during −30–60 °C. Moreover, ZICs coupled with this hydrogel electrolyte not only show a wide voltage window (up to 2 V), but also provide high energy density of 230 Wh kg−1 at power density of 500 W kg−1 with a capacity retention of 86.7% after 20,000 cycles under 20 °C. Furthermore, the ZICs are able to retain excellent capacity even under various mechanical deformation at −30 °C. This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
那L6发布了新的文献求助10
刚刚
小蘑菇应助Hotony采纳,获得30
1秒前
写论文的完成签到 ,获得积分10
1秒前
1秒前
汉堡包应助英勇的多肉采纳,获得10
1秒前
pbj发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
小白云发布了新的文献求助30
2秒前
bigben446发布了新的文献求助30
2秒前
漂亮的不言完成签到 ,获得积分10
2秒前
2秒前
新月完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
熊熊发布了新的文献求助10
3秒前
TheMonster完成签到,获得积分10
4秒前
Mengxin发布了新的文献求助10
4秒前
4秒前
shanyuyulai完成签到 ,获得积分10
4秒前
吐丝麵包发布了新的文献求助30
4秒前
陈竺完成签到 ,获得积分10
5秒前
sunialnd完成签到,获得积分10
5秒前
852应助安详砖家采纳,获得10
5秒前
独见晓焉发布了新的文献求助10
5秒前
6秒前
李健应助白一闪采纳,获得10
6秒前
6秒前
u2u2完成签到,获得积分10
6秒前
7秒前
科研通AI2S应助ggg采纳,获得10
7秒前
7秒前
优秀星星完成签到,获得积分10
7秒前
8秒前
巴拉拉发布了新的文献求助10
8秒前
8秒前
8秒前
搜集达人应助noneo采纳,获得10
8秒前
9秒前
小二郎应助yyygc采纳,获得10
9秒前
梅梅王完成签到,获得积分10
10秒前
琦琦发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534