Mechanical reliable, NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life

电解质 材料科学 极限抗拉强度 离子电导率 超级电容器 电导率 自愈水凝胶 复合材料 化学工程 电容 化学 高分子化学 电极 物理化学 工程类
作者
Tengjia Gao,Na Li,Yang Yang,Jing Li,Peng Ji,Yunlong Zhou,Jianxiong Xu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:92: 63-73 被引量:26
标识
DOI:10.1016/j.jechem.2023.12.038
摘要

Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors (ZICs) due to their high conductivity, good safety, and flexibility. However, freezing of electrolytes at low temperature (subzero) leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs. Besides, the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device. Herein, a Zn2+ and Li+ co-doped, polypyrrole-dopamine decorated Sb2S3 incorporated, and polyvinyl alcohol/ poly(N-(2-hydroxyethyl) acrylamide) double-network hydrogel electrolyte is constructed with favorable mechanical reliability, anti-freezing, and self-healing ability. In addition, it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m−1 at 20 and −30 °C, respectively, and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%, together with fracture energy of 5.14 MJ m−3. Notably, the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination, while regaining 83% of its tensile strain and almost 100% of its ionic conductivity during −30–60 °C. Moreover, ZICs coupled with this hydrogel electrolyte not only show a wide voltage window (up to 2 V), but also provide high energy density of 230 Wh kg−1 at power density of 500 W kg−1 with a capacity retention of 86.7% after 20,000 cycles under 20 °C. Furthermore, the ZICs are able to retain excellent capacity even under various mechanical deformation at −30 °C. This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Polaris完成签到,获得积分10
2秒前
NexusExplorer应助WeiBao采纳,获得80
2秒前
3秒前
探讨发布了新的文献求助20
5秒前
7秒前
FU完成签到,获得积分10
7秒前
8秒前
可爱的函函应助普鲁卡因采纳,获得10
9秒前
9秒前
许如冬应助恬恬采纳,获得10
9秒前
共享精神应助雪松采纳,获得10
10秒前
左丘绝山完成签到,获得积分10
10秒前
忧郁白易发布了新的文献求助10
11秒前
机智的誉发布了新的文献求助10
11秒前
12秒前
笨笨十三完成签到 ,获得积分10
12秒前
Lucky发布了新的文献求助10
15秒前
16秒前
温暖的涵易应助安静幻枫采纳,获得30
16秒前
科研通AI2S应助qingxinhuo采纳,获得10
18秒前
666完成签到,获得积分20
18秒前
Tsingshuai完成签到,获得积分10
18秒前
19秒前
李健的小迷弟应助exosome采纳,获得10
20秒前
zhang发布了新的文献求助10
20秒前
relink完成签到,获得积分10
22秒前
23秒前
阳和启蛰完成签到,获得积分10
23秒前
普鲁卡因发布了新的文献求助10
24秒前
25秒前
SYLH应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
图图应助科研通管家采纳,获得30
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
小杰杰应助科研通管家采纳,获得20
28秒前
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747469
求助须知:如何正确求助?哪些是违规求助? 3290098
关于积分的说明 10068369
捐赠科研通 3006228
什么是DOI,文献DOI怎么找? 1650855
邀请新用户注册赠送积分活动 786143
科研通“疑难数据库(出版商)”最低求助积分说明 751488