Epidemic effects in the diffusion of emerging digital technologies: evidence from artificial intelligence adoption

嵌入性 社会资本 有可能 产业组织 人力资本 知识管理 业务 营销 计算机科学 经济 社会学 心理学 人类学 社会科学 经济增长 心理治疗师
作者
Johannes Dahlke,Mathias Beck,Jan Kinne,David Lenz,Robert Dehghan,Martin Wörter,Bernd Ebersberger
出处
期刊:Research Policy [Elsevier]
卷期号:53 (2): 104917-104917 被引量:15
标识
DOI:10.1016/j.respol.2023.104917
摘要

The properties of emerging, digital, general-purpose technologies make it hard to observe their adoption by firms and identify the salient determinants of adoption. However, these aspects are critical since the patterns related to early-stage diffusion establish path-dependencies which have implications for the distribution of the technological opportunities and socio-economic returns linked to these technologies. We focus on the case of artificial intelligence (AI) and train a transformer language model to identify firm-level AI adoption using textual data from over 1.1 million websites and constructing a hyperlink network that includes >380,000 firms in Germany, Austria, and Switzerland. We use these data to expand and test epidemic models of inter-firm technology diffusion by integrating the concepts of social capital and network embeddedness. We find that AI adoption is related to three epidemic effect mechanisms: 1) Indirect co-location in industrial and regional hot-spots associated to production of AI knowledge; 2) Direct exposure to sources transmitting deep AI knowledge; 3) Relational embeddedness in the AI knowledge network. The pattern of adoption identified is highly clustered and features a rather closed system of AI adopters which is likely to hinder its broader diffusion. This has implications for policy which should facilitate diffusion beyond localized clusters of expertise. Our findings also point to the need to employ a systemic perspective to investigate the relation between AI adoption and firm performance to identify whether appropriation of the benefits of AI depends on network position and social capital.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助殷勤柠檬采纳,获得10
刚刚
zhuboujs发布了新的文献求助10
刚刚
1秒前
丘比特应助沈霸霸采纳,获得10
1秒前
海豚完成签到 ,获得积分10
1秒前
1秒前
崔宁宁发布了新的文献求助20
2秒前
烟雨完成签到,获得积分10
3秒前
dangpengyichuan完成签到,获得积分10
3秒前
俭朴的翠阳完成签到,获得积分20
3秒前
4秒前
buno应助牛马小羊采纳,获得10
4秒前
4秒前
5秒前
浅香千雪完成签到,获得积分10
6秒前
pjh发布了新的文献求助10
6秒前
6秒前
yoyoyanz发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
10秒前
10秒前
tuanheqi应助崔宁宁采纳,获得20
10秒前
邵邵发布了新的文献求助10
10秒前
11秒前
11秒前
活力的曲奇完成签到,获得积分10
12秒前
科研民工发布了新的文献求助10
12秒前
balabalabala完成签到,获得积分10
15秒前
QY完成签到 ,获得积分10
16秒前
曹志毅完成签到 ,获得积分10
16秒前
17秒前
kzf丶bryant发布了新的文献求助10
18秒前
18秒前
华仔应助ZHENDAO采纳,获得10
18秒前
真不错完成签到,获得积分10
19秒前
电催化皮皮完成签到,获得积分10
21秒前
简单刺猬发布了新的文献求助10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233861
求助须知:如何正确求助?哪些是违规求助? 2880343
关于积分的说明 8214733
捐赠科研通 2547792
什么是DOI,文献DOI怎么找? 1377216
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623213