SwinT-SRNet: Swin transformer with image super-resolution reconstruction network for pollen images classification

计算机科学 人工智能 变压器 北京 花粉 模式识别(心理学) 数据挖掘 中国 电压 政治学 生态学 量子力学 生物 物理 法学
作者
Baokai Zu,Tong Cao,Yafang Li,Jianqiang Li,Fujiao Ju,Hongyuan Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108041-108041 被引量:21
标识
DOI:10.1016/j.engappai.2024.108041
摘要

With the intensification of urbanization in human society, pollen allergy has become a seasonal epidemic disease with a considerable incidence rate, seriously affecting the healthy life of residents. Accurately classifying and recognizing major allergenic pollens for effective pollen monitoring and forecasting is of great practical significance for improving urban livability and citizens' quality of life. With the development of deep learning, automatic classification gradually replaces the process of manually recognizing pollen grains. Recently, Swin Transformer (SwinT) has demonstrated strong competitiveness in various tasks. In order to solve the problem of low resolution and complex background information of pollen images, we propose a novel classification framework titled Swin Transformer with Image Super-resolution Reconstruction Network (SwinT-SRNet) for pollen images classification. In the proposed SwinT-SRNet network, an image super-resolution reconstruction method based on the Efficient Super-resolution Transformer (ESRT) is designed to eliminate the blurring problem that arises when resizing low-resolution images to fit the training dimensions of the SwinT model. Furthermore, a high-frequency (HF) information extraction module is proposed to capture high-frequency information in images to provide richer information for the SwinT-SRNet classification network. Extensive experimental evaluations on a self-constructed allergic pollen dataset (POLLEN8BJ) in Beijing, China, as well as a public pollen dataset POLLEN20L-det, show that the SwinT-SRNet model achieves remarkable accuracies of 99.46% and 98.98%. Notably, even without pre-training weights, the model achieved 98.57% and 98.31% accuracy on the POLLEN8BJ and POLLEN20L-det datasets, which are 1.05% and 1.19% higher than SwinT, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
Raki完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分10
2秒前
2秒前
2秒前
阿星完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
英姑应助Julo采纳,获得10
3秒前
3秒前
兴奋尔竹完成签到,获得积分10
3秒前
4秒前
mjtsurgery发布了新的文献求助10
4秒前
sleep应助LLLLL采纳,获得10
4秒前
复杂惜霜完成签到,获得积分20
4秒前
路人甲发布了新的文献求助10
5秒前
ii发布了新的文献求助10
5秒前
lizl应助105度余温采纳,获得10
5秒前
Earven发布了新的文献求助10
5秒前
野性的梦槐完成签到,获得积分10
5秒前
5秒前
D123应助smile采纳,获得10
6秒前
6秒前
Hello应助雾里青采纳,获得10
6秒前
复杂惜霜发布了新的文献求助10
6秒前
111完成签到,获得积分10
6秒前
thy完成签到,获得积分10
7秒前
7秒前
7秒前
文献发布了新的文献求助10
7秒前
金锐发布了新的文献求助10
7秒前
7秒前
8秒前
亦安发布了新的文献求助10
8秒前
Jasper应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603