Occlusion-aware Unsupervised Light Field Depth Estimation based on Muti-Scale GANs

人工智能 计算机科学 鉴别器 光场 深度学习 模式识别(心理学) 无监督学习 卷积神经网络 领域(数学) 特征学习 计算机视觉 数学 电信 探测器 纯数学
作者
Wenbin Yan,Xiaogang Zhang,Hua Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 6318-6333 被引量:2
标识
DOI:10.1109/tcsvt.2024.3359661
摘要

The estimation of depth from 4D light field images is a fundamental problem for perceiving and reconstructing environmental scenes. While learning-based methods have achieved remarkable results in this field, most of them rely on supervised learning, which faces significant challenges in real-world applications due to the lack of sufficient available ground truth depth maps. In this paper, we propose an unsupervised learning architecture based on a generative adversarial learning model for light field image depth estimation(OALFGAN). Specifically, our approach involves a multi-scale deep convolutional generative adversarial network learning system that includes a sparse-to-dense cascaded multi-scale generator and a discriminator, which decomposes the problem of generating high-quality images into more manageable sub-problems. To address the issue of violations of photometric consistency that may be caused by occlusion, we introduce a spatial-angular attention module that adaptively extracts view features with fewer occlusions and richer textures to generate more accurate disparity maps. Furthermore, we design a loss function that incorporates adaptive angular entropy consistency, symmetry loss, and edge-aware loss based on the distribution regularity and self-constraint of light field images to further optimize occlusion and disparity discontinuity issues and improve the reliability of the final depth prediction. Our proposed method demonstrates superior performance over existing methods on synthetic datasets, both quantitatively and qualitatively. Moreover, our proposed method exhibits excellent generalization performance on real-world datasets, demonstrating the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭shuai发布了新的文献求助10
刚刚
丽丽发布了新的文献求助10
刚刚
1秒前
带回家反馈完成签到,获得积分20
1秒前
1秒前
SYLH应助ZYC007采纳,获得10
3秒前
4秒前
尼莫发布了新的文献求助10
5秒前
鲸落发布了新的文献求助10
5秒前
时安完成签到 ,获得积分10
5秒前
5秒前
6秒前
啵啵冰应助Dumbledonut采纳,获得50
6秒前
小高发布了新的文献求助10
7秒前
下山完成签到 ,获得积分10
8秒前
jw发布了新的文献求助10
8秒前
11秒前
111完成签到,获得积分10
11秒前
12秒前
淡定的定帮完成签到,获得积分10
13秒前
Orange应助dreamlightzy采纳,获得10
14秒前
17秒前
jdio完成签到,获得积分10
19秒前
20秒前
KaK发布了新的文献求助10
21秒前
Arbor发布了新的文献求助10
23秒前
无情听南发布了新的文献求助10
23秒前
Sherlock完成签到,获得积分10
24秒前
科研通AI2S应助jovi采纳,获得10
26秒前
李雨完成签到,获得积分10
27秒前
27秒前
星辰大海应助鲸落采纳,获得30
29秒前
务实蜻蜓完成签到,获得积分10
29秒前
宇是眼中星眸完成签到 ,获得积分10
29秒前
ED应助叶文腾采纳,获得10
30秒前
lailailai发布了新的文献求助10
30秒前
科研通AI5应助认真以寒采纳,获得10
31秒前
顾矜应助Arbor采纳,获得10
31秒前
31秒前
顾矜应助Vv采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753439
求助须知:如何正确求助?哪些是违规求助? 3297042
关于积分的说明 10096789
捐赠科研通 3011741
什么是DOI,文献DOI怎么找? 1654166
邀请新用户注册赠送积分活动 788616
科研通“疑难数据库(出版商)”最低求助积分说明 752962