BearingPGA-Net: A Lightweight and Deployable Bearing Fault Diagnosis Network via Decoupled Knowledge Distillation and FPGA Acceleration

现场可编程门阵列 计算机科学 Verilog公司 软件可移植性 嵌入式系统 断层(地质) 计算机工程 地震学 程序设计语言 地质学
作者
Jing-Xiao Liao,S. H. Wei,C. Xie,Tieyong Zeng,Jinwei Sun,Shiping Zhang,Xiaoge Zhang,Fenglei Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:18
标识
DOI:10.1109/tim.2023.3346517
摘要

Deep learning has achieved remarkable success in the field of bearing fault diagnosis. However, this success comes with larger models and more complex computations, which cannot be transferred into industrial fields requiring models to be of high speed, strong portability, and low-power consumption. In this article, we propose a lightweight and deployable model for bearing fault diagnosis, referred to as BearingPGA-Net, to address these challenges. First, aided by a well-trained large model, we train BearingPGA-Net via decoupled knowledge distillation (DKD). Despite its small size, our model demonstrates excellent fault diagnosis performance compared with other lightweight state-of-the-art methods. Second, we design a field-programmable gate array (FPGA) acceleration scheme for BearingPGA-Net using Verilog. This scheme involves the customized quantization and designing programmable logic gates for each layer of BearingPGA-Net on the FPGA, with an emphasis on parallel computing and module reuse to enhance the computational speed. To the best of our knowledge, this is the first instance of deploying a convolutional neural network (CNN)-based bearing fault diagnosis model on an FPGA. Experimental results reveal that our deployment scheme achieves over $200\times $ faster diagnosis speed compared with CPU, while achieving a lower than 0.4% performance drop in terms of F1, recall, and precision score on our independently collected bearing dataset. Our code is available at https://github.com/asdvfghg/BearingPGA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电池小能手完成签到,获得积分10
1秒前
Bubble_bei完成签到 ,获得积分10
2秒前
董恋风完成签到,获得积分10
3秒前
大模型应助一一采纳,获得10
4秒前
4秒前
5秒前
海鑫王完成签到,获得积分10
6秒前
mao关注了科研通微信公众号
6秒前
Attendre完成签到 ,获得积分10
6秒前
爆米花应助Faith采纳,获得10
7秒前
傲娇的月亮完成签到,获得积分10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
田様应助慢慢采纳,获得10
8秒前
8秒前
劼大大完成签到,获得积分10
8秒前
执着的草丛完成签到,获得积分10
8秒前
8秒前
wanci应助zwx采纳,获得10
9秒前
zwx发布了新的文献求助20
9秒前
10秒前
Owen应助风趣的天奇采纳,获得10
11秒前
clear发布了新的文献求助10
12秒前
Tting发布了新的文献求助10
12秒前
wsd发布了新的文献求助10
12秒前
AhhHuang举报活力怜雪求助涉嫌违规
12秒前
sulin发布了新的文献求助10
12秒前
麦地娜发布了新的文献求助10
12秒前
兜兜风gf完成签到 ,获得积分10
13秒前
13秒前
可爱的函函应助张远最帅采纳,获得10
13秒前
沙库巴曲完成签到,获得积分10
13秒前
熊猫发布了新的文献求助20
14秒前
燕柯龙之介完成签到,获得积分10
14秒前
14秒前
敲敲发布了新的文献求助10
15秒前
shelly发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049