BearingPGA-Net: A Lightweight and Deployable Bearing Fault Diagnosis Network via Decoupled Knowledge Distillation and FPGA Acceleration

现场可编程门阵列 计算机科学 Verilog公司 软件可移植性 嵌入式系统 断层(地质) 计算机工程 地质学 地震学 程序设计语言
作者
Jing-Xiao Liao,S. H. Wei,C. Xie,Tieyong Zeng,Jinwei Sun,Shiping Zhang,Xiaoge Zhang,Fenglei Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:3
标识
DOI:10.1109/tim.2023.3346517
摘要

Deep learning has achieved remarkable success in the field of bearing fault diagnosis. However, this success comes with larger models and more complex computations, which cannot be transferred into industrial fields requiring models to be of high speed, strong portability, and low-power consumption. In this article, we propose a lightweight and deployable model for bearing fault diagnosis, referred to as BearingPGA-Net, to address these challenges. First, aided by a well-trained large model, we train BearingPGA-Net via decoupled knowledge distillation (DKD). Despite its small size, our model demonstrates excellent fault diagnosis performance compared with other lightweight state-of-the-art methods. Second, we design a field-programmable gate array (FPGA) acceleration scheme for BearingPGA-Net using Verilog. This scheme involves the customized quantization and designing programmable logic gates for each layer of BearingPGA-Net on the FPGA, with an emphasis on parallel computing and module reuse to enhance the computational speed. To the best of our knowledge, this is the first instance of deploying a convolutional neural network (CNN)-based bearing fault diagnosis model on an FPGA. Experimental results reveal that our deployment scheme achieves over $200\times $ faster diagnosis speed compared with CPU, while achieving a lower than 0.4% performance drop in terms of F1, recall, and precision score on our independently collected bearing dataset. Our code is available at https://github.com/asdvfghg/BearingPGA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助杰森斯坦虎采纳,获得10
1秒前
科研通AI2S应助XYZ采纳,获得10
3秒前
ccm应助西贝子子采纳,获得10
3秒前
chin关注了科研通微信公众号
4秒前
4秒前
qian完成签到,获得积分10
6秒前
科研小趴菜关注了科研通微信公众号
6秒前
科研通AI2S应助Hayat采纳,获得20
7秒前
11秒前
星星完成签到,获得积分10
11秒前
11秒前
ckmen5完成签到 ,获得积分10
13秒前
13秒前
HMBB发布了新的文献求助10
16秒前
tk完成签到 ,获得积分10
16秒前
16秒前
李白发布了新的文献求助10
16秒前
gdh发布了新的文献求助10
16秒前
西贝子子完成签到,获得积分20
17秒前
18秒前
19秒前
珊熙完成签到,获得积分20
20秒前
chin发布了新的文献求助10
23秒前
ZY发布了新的文献求助10
24秒前
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得10
25秒前
踏实天空应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
26秒前
27秒前
27秒前
你好啊发布了新的文献求助10
30秒前
沐熙完成签到,获得积分10
30秒前
丘比特应助gdh采纳,获得10
32秒前
Majician完成签到,获得积分10
34秒前
34秒前
Akim应助失重心跳采纳,获得10
35秒前
NexusExplorer应助surain采纳,获得30
35秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043