BearingPGA-Net: A Lightweight and Deployable Bearing Fault Diagnosis Network via Decoupled Knowledge Distillation and FPGA Acceleration

现场可编程门阵列 计算机科学 Verilog公司 软件可移植性 嵌入式系统 断层(地质) 计算机工程 地质学 地震学 程序设计语言
作者
Jing-Xiao Liao,S. H. Wei,C. Xie,Tieyong Zeng,Jinwei Sun,Shiping Zhang,Xiaoge Zhang,Fenglei Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:3
标识
DOI:10.1109/tim.2023.3346517
摘要

Deep learning has achieved remarkable success in the field of bearing fault diagnosis. However, this success comes with larger models and more complex computations, which cannot be transferred into industrial fields requiring models to be of high speed, strong portability, and low-power consumption. In this article, we propose a lightweight and deployable model for bearing fault diagnosis, referred to as BearingPGA-Net, to address these challenges. First, aided by a well-trained large model, we train BearingPGA-Net via decoupled knowledge distillation (DKD). Despite its small size, our model demonstrates excellent fault diagnosis performance compared with other lightweight state-of-the-art methods. Second, we design a field-programmable gate array (FPGA) acceleration scheme for BearingPGA-Net using Verilog. This scheme involves the customized quantization and designing programmable logic gates for each layer of BearingPGA-Net on the FPGA, with an emphasis on parallel computing and module reuse to enhance the computational speed. To the best of our knowledge, this is the first instance of deploying a convolutional neural network (CNN)-based bearing fault diagnosis model on an FPGA. Experimental results reveal that our deployment scheme achieves over $200\times $ faster diagnosis speed compared with CPU, while achieving a lower than 0.4% performance drop in terms of F1, recall, and precision score on our independently collected bearing dataset. Our code is available at https://github.com/asdvfghg/BearingPGA-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就芒果tv完成签到,获得积分10
1秒前
tao发布了新的文献求助10
1秒前
2秒前
obscure发布了新的文献求助10
2秒前
2秒前
微笑的土豆完成签到,获得积分10
2秒前
3秒前
李还乱完成签到,获得积分10
4秒前
smottom应助洪星采纳,获得10
5秒前
6秒前
苏卿应助六月666采纳,获得80
6秒前
你的女孩TT完成签到,获得积分10
6秒前
痛苦啊应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
May应助科研通管家采纳,获得20
7秒前
知许解夏应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
yznfly应助科研通管家采纳,获得200
7秒前
Orange应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得30
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
dingjianqiang发布了新的文献求助10
8秒前
852应助科研通管家采纳,获得10
8秒前
May应助科研通管家采纳,获得20
8秒前
从容盼山应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
传奇3应助凡凡采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Lane_Crumus应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得30
8秒前
AnJaShua发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403