An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

自动汇总 计算机科学 放射科 医学物理学 医学 情报检索
作者
Chong Ma,Zihao Wu,J. Wang,Shaochen Xu,Yaonai Wei,Zhengliang Liu,Fang Zeng,Xi Jiang,Lei Guo,Xiaoyan Cai,Shu Zhang,Tuo Zhang,Dajiang Zhu,Dinggang Shen,Tianming Liu,Xiang Li
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:8
标识
DOI:10.1109/tai.2024.3364586
摘要

The “Impression” section of a radiology report is a critical basis for communication between radiologists and other physicians. Typically written by radiologists, this part is derived from the “Findings” section, which can be laborious and error-prone. Although deep-learning based models, such as BERT, have achieved promising results in Automatic Impression Generation (AIG), such models often require substantial amounts of medical data and have poor generalization performance. Recently, Large Language Models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, but their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, leveraging the contextual learning capabilities of LLMs through our dynamic prompt and iterative optimization algorithm to accomplish the AIG task. ImpressionGPT initially employs a small amount of domain-specific data to create a dynamic prompt, extracting contextual semantic information closely related to the test data. Subsequently, the iterative optimization algorithm automatically evaluates the output of LLMs and provides optimization suggestions, continuously refining the output results. The proposed ImpressionGPT model achieves superior performance of AIG task on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
280应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
刚刚
280应助科研通管家采纳,获得10
1秒前
nancy应助科研通管家采纳,获得10
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
盛小铃发布了新的文献求助10
4秒前
4秒前
5秒前
方方发布了新的文献求助10
5秒前
皛川完成签到,获得积分20
5秒前
6秒前
CD完成签到,获得积分10
6秒前
7秒前
Ava应助糊涂的剑采纳,获得10
7秒前
Hunter发布了新的文献求助10
7秒前
8秒前
送你一匹马完成签到,获得积分10
8秒前
搜集达人应助lingxu采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
DDD完成签到,获得积分10
13秒前
糊涂的剑完成签到,获得积分10
13秒前
xu给细胞在江山在的求助进行了留言
13秒前
兔子发布了新的文献求助10
14秒前
16秒前
18秒前
我是老大应助含蓄的晓绿采纳,获得10
19秒前
CodeCraft应助科研新牛马采纳,获得10
19秒前
英姑应助73采纳,获得10
20秒前
3n同学完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632465
求助须知:如何正确求助?哪些是违规求助? 4726925
关于积分的说明 14982122
捐赠科研通 4790432
什么是DOI,文献DOI怎么找? 2558280
邀请新用户注册赠送积分活动 1518679
关于科研通互助平台的介绍 1479141