An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

自动汇总 计算机科学 放射科 医学物理学 医学 情报检索
作者
Chong Ma,Zihao Wu,J. Wang,Shaochen Xu,Yaonai Wei,Zhengliang Liu,Fang Zeng,Xi Jiang,Lei Guo,Xiaoyan Cai,Shu Zhang,Tuo Zhang,Dajiang Zhu,Dinggang Shen,Tianming Liu,Xiang Li
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:8
标识
DOI:10.1109/tai.2024.3364586
摘要

The “Impression” section of a radiology report is a critical basis for communication between radiologists and other physicians. Typically written by radiologists, this part is derived from the “Findings” section, which can be laborious and error-prone. Although deep-learning based models, such as BERT, have achieved promising results in Automatic Impression Generation (AIG), such models often require substantial amounts of medical data and have poor generalization performance. Recently, Large Language Models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, but their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, leveraging the contextual learning capabilities of LLMs through our dynamic prompt and iterative optimization algorithm to accomplish the AIG task. ImpressionGPT initially employs a small amount of domain-specific data to create a dynamic prompt, extracting contextual semantic information closely related to the test data. Subsequently, the iterative optimization algorithm automatically evaluates the output of LLMs and provides optimization suggestions, continuously refining the output results. The proposed ImpressionGPT model achieves superior performance of AIG task on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流觞曲水发布了新的文献求助10
刚刚
1秒前
XLeft完成签到 ,获得积分10
2秒前
3秒前
健忘捕发布了新的文献求助20
3秒前
3秒前
xueshanfeihu发布了新的文献求助20
4秒前
海风发布了新的文献求助10
4秒前
Miller完成签到,获得积分0
5秒前
小二郎应助刘哔采纳,获得30
5秒前
6秒前
7秒前
7秒前
7秒前
豆子完成签到,获得积分10
9秒前
小二郎应助Kestis.采纳,获得10
9秒前
xionghaizi完成签到,获得积分10
12秒前
jx完成签到,获得积分10
13秒前
13秒前
共享精神应助zty123采纳,获得10
13秒前
慕青应助苹果飞绿采纳,获得10
15秒前
毒盐发布了新的文献求助10
15秒前
Leokin完成签到,获得积分10
16秒前
海风完成签到,获得积分20
18秒前
冷傲冬易发布了新的文献求助10
18秒前
SYLH应助Kestis.采纳,获得30
18秒前
zzxx完成签到,获得积分10
19秒前
20秒前
21秒前
迷惘墨香发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助30
21秒前
22秒前
22秒前
23秒前
Lizhe完成签到,获得积分10
23秒前
23秒前
Owen应助温柔从凝采纳,获得10
23秒前
sx12138发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232