An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT

自动汇总 计算机科学 放射科 医学物理学 医学 情报检索
作者
Chong Ma,Zihao Wu,J. Wang,Shaochen Xu,Yaonai Wei,Zhengliang Liu,Fang Zeng,Xi Jiang,Lei Guo,Xiaoyan Cai,Shu Zhang,Tuo Zhang,Dajiang Zhu,Dinggang Shen,Tianming Liu,Xiang Li
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:8
标识
DOI:10.1109/tai.2024.3364586
摘要

The “Impression” section of a radiology report is a critical basis for communication between radiologists and other physicians. Typically written by radiologists, this part is derived from the “Findings” section, which can be laborious and error-prone. Although deep-learning based models, such as BERT, have achieved promising results in Automatic Impression Generation (AIG), such models often require substantial amounts of medical data and have poor generalization performance. Recently, Large Language Models (LLMs) like ChatGPT have shown strong generalization capabilities and performance, but their performance in specific domains, such as radiology, remains under-investigated and potentially limited. To address this limitation, we propose ImpressionGPT, leveraging the contextual learning capabilities of LLMs through our dynamic prompt and iterative optimization algorithm to accomplish the AIG task. ImpressionGPT initially employs a small amount of domain-specific data to create a dynamic prompt, extracting contextual semantic information closely related to the test data. Subsequently, the iterative optimization algorithm automatically evaluates the output of LLMs and provides optimization suggestions, continuously refining the output results. The proposed ImpressionGPT model achieves superior performance of AIG task on both MIMIC-CXR and OpenI datasets without requiring additional training data or fine-tuning the LLMs. This work presents a paradigm for localizing LLMs that can be applied in a wide range of similar application scenarios, bridging the gap between general-purpose LLMs and the specific language processing needs of various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh_li完成签到,获得积分10
1秒前
cheng完成签到,获得积分10
1秒前
1秒前
NN应助李7采纳,获得20
1秒前
2秒前
pp完成签到,获得积分10
3秒前
浮游应助壮观乘云采纳,获得10
3秒前
jun完成签到 ,获得积分10
3秒前
3秒前
3秒前
嗯嗯应助王之争霸采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
海南发布了新的文献求助10
6秒前
晨晨发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
缓慢尔岚发布了新的文献求助10
8秒前
善良随阴完成签到,获得积分10
8秒前
8秒前
8秒前
奶白的雪子完成签到,获得积分10
8秒前
星辰大海应助阿依咕噜采纳,获得10
10秒前
香蕉觅云应助DG采纳,获得10
10秒前
睡觉了完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Y_Y完成签到,获得积分10
11秒前
zorro3574发布了新的文献求助10
11秒前
11秒前
11秒前
嘿嘿完成签到,获得积分10
12秒前
renxin发布了新的文献求助10
12秒前
13秒前
14秒前
内向孤菱发布了新的文献求助30
14秒前
14秒前
可可布朗尼完成签到,获得积分10
15秒前
思源应助自信笑槐采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131