亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Anti-Cancer Peptides Identification and Activity Type Classification with Protein Sequence Pre-training

鉴定(生物学) 序列(生物学) 癌症 计算机科学 人工智能 蛋白质测序 模式识别(心理学) 计算生物学 肽序列 医学 生物 基因 内科学 遗传学 植物
作者
Shaokai Wang,Bin Ma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3358632
摘要

Cancer remains a significant global health challenge, responsible for millions of deaths annually. Addressing this issue necessitates the discovery of novel anti-cancer drugs. Anti-cancer peptides (ACPs), with their unique ability to selectively target cancer cells, offer new hope in discovering low side-effect anti-cancer drugs. However, the process of discovering novel ACPs is both time-consuming and costly. Therefore, there is an urgent need for a computational method that can predict whether a given peptide is an ACP and classify its specific functional types. In this paper, we introduce DUO-ACP, a model serving dual roles in ACP prediction: identification and functional type classification. DUO-ACP employs two embedding modules to acquire knowledge about global protein features and local ACP characteristics, complemented by a prediction module. When assessed on two publicly available datasets for each task, DUO-ACP surpasses all existing methods, achieving outstanding results: an ACP identification accuracy of 89.5% and a Macro-averaged AUC of 88.6% in ACP functional type classification. We further interpret the contribution of each part of our model, including the two types of embeddings as well as ensemble learning. On a new curated dataset, the prediction results of DUO-ACP closely match existing literature, highlighting DUO-ACP's generalization capabilities on previously unseen data and displaying the potential capability of discovering novel ACP. The source code of DUO-ACP is publicly available on GitHub ( https://github.com/waterlooms/DUO-ACP )
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恩佐·费尔南德斯完成签到,获得积分10
24秒前
31秒前
Akim应助落后从阳采纳,获得10
46秒前
57秒前
59秒前
1分钟前
落后从阳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助Who采纳,获得10
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
2分钟前
坚强的广山完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
3分钟前
白菜菜和向肉肉完成签到,获得积分10
4分钟前
4分钟前
李健应助怡然柚子采纳,获得10
4分钟前
4分钟前
andrele发布了新的文献求助10
4分钟前
5分钟前
YOLO完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
00发布了新的文献求助10
6分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
东瓜魔法师完成签到,获得积分10
6分钟前
丘比特应助00采纳,获得10
6分钟前
6分钟前
阿浮完成签到 ,获得积分10
6分钟前
淡淡无春发布了新的文献求助30
6分钟前
7分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307414
求助须知:如何正确求助?哪些是违规求助? 2941030
关于积分的说明 8500232
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461