Anti-Cancer Peptides Identification and Activity Type Classification with Protein Sequence Pre-training

鉴定(生物学) 序列(生物学) 癌症 计算机科学 人工智能 蛋白质测序 模式识别(心理学) 计算生物学 肽序列 医学 生物 基因 内科学 遗传学 植物
作者
Shaokai Wang,Bin Ma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3358632
摘要

Cancer remains a significant global health challenge, responsible for millions of deaths annually. Addressing this issue necessitates the discovery of novel anti-cancer drugs. Anti-cancer peptides (ACPs), with their unique ability to selectively target cancer cells, offer new hope in discovering low side-effect anti-cancer drugs. However, the process of discovering novel ACPs is both time-consuming and costly. Therefore, there is an urgent need for a computational method that can predict whether a given peptide is an ACP and classify its specific functional types. In this paper, we introduce DUO-ACP, a model serving dual roles in ACP prediction: identification and functional type classification. DUO-ACP employs two embedding modules to acquire knowledge about global protein features and local ACP characteristics, complemented by a prediction module. When assessed on two publicly available datasets for each task, DUO-ACP surpasses all existing methods, achieving outstanding results: an ACP identification accuracy of 89.5% and a Macro-averaged AUC of 88.6% in ACP functional type classification. We further interpret the contribution of each part of our model, including the two types of embeddings as well as ensemble learning. On a new curated dataset, the prediction results of DUO-ACP closely match existing literature, highlighting DUO-ACP's generalization capabilities on previously unseen data and displaying the potential capability of discovering novel ACP. The source code of DUO-ACP is publicly available on GitHub ( https://github.com/waterlooms/DUO-ACP )
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵雨轩完成签到 ,获得积分10
1秒前
星河圈揽完成签到,获得积分10
1秒前
bkagyin应助勤学勤积累采纳,获得10
1秒前
1秒前
2秒前
neilphilosci完成签到 ,获得积分10
7秒前
华仔应助paojiao采纳,获得10
7秒前
绫波完成签到,获得积分20
7秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Xman发布了新的文献求助10
10秒前
陆睿完成签到,获得积分10
11秒前
fanfan完成签到,获得积分10
12秒前
美好焦发布了新的文献求助10
13秒前
15秒前
票子完成签到,获得积分10
16秒前
翟如风发布了新的文献求助10
19秒前
CipherSage应助快乐的慕灵采纳,获得10
19秒前
20秒前
慕青应助祯果粒采纳,获得10
22秒前
CipherSage应助陈陈采纳,获得10
22秒前
22秒前
22秒前
ZYN完成签到 ,获得积分10
23秒前
饼子完成签到 ,获得积分10
23秒前
乐乐应助sci来来来采纳,获得10
25秒前
25秒前
27秒前
文静千凡发布了新的文献求助10
27秒前
彭于晏应助berg采纳,获得10
28秒前
28秒前
harmory发布了新的文献求助30
28秒前
zaphkiel发布了新的文献求助10
28秒前
胥风完成签到,获得积分10
28秒前
28秒前
人言可畏完成签到 ,获得积分10
29秒前
马佳雪完成签到 ,获得积分10
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309