End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study

结直肠癌 医学 危险系数 回顾性队列研究 比例危险模型 癌症 肿瘤科 置信区间 内科学
作者
Xiaofeng Jiang,Michael Hoffmeister,Hermann Brenner,Hannah Sophie Muti,Tanwei Yuan,Sebastian Foersch,Nicholas P. West,Alexander Brobeil,Jitendra Jonnagaddala,Nicholas J. Hawkins,Robyn L. Ward,Titus J. Brinker,Oliver Lester Saldanha,Jia Ke,Wolfram Müller,Heike I. Grabsch,Philip Quirke,Daniel Truhn,Jakob Nikolas Kather
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (1): e33-e43 被引量:11
标识
DOI:10.1016/s2589-7500(23)00208-x
摘要

Background Precise prognosis prediction in patients with colorectal cancer (ie, forecasting survival) is pivotal for individualised treatment and care.Histopathological tissue slides of colorectal cancer specimens contain rich prognostically relevant information.However, existing studies do not have multicentre external validation with realworld sample processing protocols, and algorithms are not yet widely used in clinical routine. MethodsIn this retrospective, multicentre study, we collected tissue samples from four groups of patients with resected colorectal cancer from Australia, Germany, and the USA.We developed and externally validated a deep learning-based prognostic-stratification system for automatic prediction of overall and cancer-specific survival in patients with resected colorectal cancer.We used the model-predicted risk scores to stratify patients into different risk groups and compared survival outcomes between these groups.Additionally, we evaluated the prognostic value of these risk groups after adjusting for established prognostic variables. FindingsWe trained and validated our model on a total of 4428 patients.We found that patients could be divided into high-risk and low-risk groups on the basis of the deep learning-based risk score.On the internal test set, the group with a high-risk score had a worse prognosis than the group with a low-risk score, as reflected by a hazard ratio (HR) of 4•50 (95% CI 3•33-6•09) for overall survival and 8•35 (5•06-13•78) for disease-specific survival (DSS).We found consistent performance across three large external test sets.In a test set of 1395 patients, the high-risk group had a lower DSS than the low-risk group, with an HR of 3•08 (2•44-3•89).In two additional test sets, the HRs for DSS were 2•23 (1•23-4•04) and 3•07 (1•78-5•3).We showed that the prognostic value of the deep learning-based risk score is independent of established clinical risk factors.Interpretation Our findings indicate that attention-based self-supervised deep learning can robustly offer a prognosis on clinical outcomes in patients with colorectal cancer, generalising across different populations and serving as a potentially new prognostic tool in clinical decision making for colorectal cancer management.We release all source codes and trained models under an open-source licence, allowing other researchers to reuse and build upon our work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
逍遥发布了新的文献求助10
1秒前
1秒前
skyyy完成签到 ,获得积分10
2秒前
今后应助公冶愚志采纳,获得10
2秒前
一树春风发布了新的文献求助10
3秒前
松鼠完成签到 ,获得积分10
3秒前
可爱的函函应助小鱼采纳,获得10
3秒前
安息香发布了新的文献求助10
4秒前
QQQ完成签到,获得积分10
4秒前
所所应助Radon采纳,获得10
5秒前
jingzhang发布了新的文献求助10
5秒前
magicyouyou完成签到,获得积分10
6秒前
6秒前
学术废物完成签到,获得积分10
7秒前
8秒前
wanci应助sunianjinshi采纳,获得10
9秒前
玛格苏芮发布了新的文献求助10
9秒前
852应助IAMXC采纳,获得10
10秒前
安息香完成签到,获得积分10
11秒前
西贝完成签到 ,获得积分10
13秒前
充电宝应助一树春风采纳,获得10
14秒前
领导范儿应助哈哈哈采纳,获得10
14秒前
14秒前
乐正怡发布了新的文献求助30
15秒前
15秒前
lili发布了新的文献求助20
16秒前
Akim应助糖伯虎采纳,获得10
18秒前
秦春歌发布了新的文献求助10
22秒前
LQS发布了新的文献求助10
24秒前
24秒前
27秒前
28秒前
香蕉觅云应助安卉采纳,获得10
28秒前
28秒前
29秒前
哇咔咔发布了新的文献求助10
30秒前
30秒前
小杨发布了新的文献求助10
31秒前
sunianjinshi完成签到,获得积分10
32秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291