Molecular Engineering of Rylene Diimides via Sila‐Annulation Toward High‐Mobility Organic Semiconductors

废止 堆积 电子迁移率 双极扩散 有机半导体 有机场效应晶体管 材料科学 半导体 晶体管 纳米技术 化学 电子 光电子学 场效应晶体管 有机化学 物理 电压 催化作用 量子力学
作者
Ning Xue,Kai Chen,Guogang Liu,Zhaohui Wang,Wei Jiang
出处
期刊:Small [Wiley]
卷期号:20 (17) 被引量:3
标识
DOI:10.1002/smll.202307875
摘要

Abstract The continuous innovation of captivating new organic semiconducting materials remains pivotal in the development of high‐performance organic electronic devices. Herein, a molecular engineering by combining sila‐annulation with the vertical extension of rylene diimides (RDIs) toward high‐mobility organic semiconductors is presented. The unilateral and bilateral sila‐annulated quaterrylene diimides (Si‐QDI and 2Si‐QDI) are designed and synthesized. In particular, the symmetrical bilateral 2Si‐QDI exhibits a compact, 1D slipped π – π stacking arrangement through the synergistic combination of a sizable π ‐conjugated core and intercalating alkyl chains. Combining the appreciable elevated HOMO levels and reduced energy gaps, the single‐crystalline organic field‐effect transistors (SC‐OFETs) based on 2Si‐QDI demonstrate exceptional ambipolar transport characteristics with an impressive hole mobility of 3.0 cm 2 V −1 s −1 and an electron mobility of 0.03 cm 2 V −1 s −1 , representing the best ampibolar SC‐OFETs based on RDIs. Detailed theoretical calculations rationalize that the larger transfer integral along the π – π stacking direction is responsible for the achievement of the superior charge transport. This study showcases the remarkable potential of sila‐annulation in optimizing carrier transport performances of polycyclic aromatic hydrocarbons (PAHs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile完成签到,获得积分10
刚刚
斯文败类应助动听导师采纳,获得10
1秒前
1秒前
复杂曼梅发布了新的文献求助10
1秒前
迷糊完成签到,获得积分10
2秒前
2秒前
汉堡包应助Rrr采纳,获得10
3秒前
新的心跳发布了新的文献求助10
3秒前
NN应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得60
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研小白应助科研通管家采纳,获得40
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
活力绮兰应助科研通管家采纳,获得10
5秒前
感动秋完成签到 ,获得积分10
6秒前
6秒前
6秒前
gzsy完成签到 ,获得积分10
7秒前
7秒前
sexing发布了新的文献求助10
7秒前
丘比特应助koi采纳,获得10
7秒前
Sang完成签到 ,获得积分10
9秒前
9秒前
10秒前
金色年华完成签到,获得积分10
10秒前
丘比特应助daniel采纳,获得10
11秒前
我是老大应助szl采纳,获得10
12秒前
12秒前
赤邪完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808