Structure-Texture Dual Preserving for Remote Sensing Image Super-Resolution

计算机科学 图像纹理 人工智能 计算机视觉 对偶(语法数字) 图像分辨率 纹理(宇宙学) 图像(数学) 纹理压缩 图像分割 模式识别(心理学) 遥感 地质学 艺术 文学类
作者
Kanghui Zhao,Tao Lü,Yanduo Zhang,Junjun Jiang,Zhongyuan Wang,Zixiang Xiong
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2024.3362880
摘要

Most of the existing remote sensing image Super-Resolution (SR) methods based on deep learning tend to learn the mapping from low-resolution (LR) images to High-Resolution (HR) images directly. But they ignore the potential structure and texture consistency of LR and HR spaces, which cause the loss of high-frequency information and produce artifacts. A structure-texture dual preserving (STP) method is proposed to solve this problem and generate pleasing details. Specifically, we propose a novel edge prior enhancement strategy that uses the edges of LR images and the proposed interactive supervised attention module (ISAM) to guide SR reconstruction. First, we introduce the LR edge map as an a prior structural expression for SR reconstruction, which further enhances the SR process with edge preservation capability. In addition, to obtain finer texture edge information, we propose a novel ISAM in order to correct the initial LR edge map with high frequency information. By introducing LR edges and ISAM-corrected HR edges, we build LR-HR edge mapping to preserve the consistency of LR and HR edge structure and texture, which provides supervised information for SR reconstruction. Finally, we explore the salient features of the image and its edges in the ascending space, and restored the difference between LR and HR images by residual and dense learning. A large number of experimental results on Draper and NWPU-RESISC45 datesets show that our model is superior to several advanced SR algorithms in both objective and subjective image quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风云鱼发布了新的文献求助10
1秒前
萧瑟秋风今又是完成签到 ,获得积分10
3秒前
李白完成签到,获得积分20
3秒前
pancake发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
sunshine发布了新的文献求助10
6秒前
磐xst完成签到 ,获得积分10
6秒前
7秒前
10秒前
10秒前
13秒前
Ava应助飞飞飞采纳,获得10
13秒前
15秒前
17秒前
平城落叶完成签到,获得积分10
18秒前
OK完成签到,获得积分10
19秒前
21秒前
毛毛完成签到,获得积分10
22秒前
自觉的绮烟完成签到,获得积分10
22秒前
GuMingyang完成签到,获得积分10
22秒前
22秒前
害羞的妙梦完成签到,获得积分10
23秒前
23秒前
难过怀绿完成签到,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
可积完成签到,获得积分10
27秒前
ShengjuChen完成签到 ,获得积分10
27秒前
tony发布了新的文献求助10
28秒前
健康的人生完成签到,获得积分10
28秒前
严yee发布了新的文献求助10
28秒前
29秒前
飞飞飞发布了新的文献求助10
29秒前
29秒前
刘科研完成签到,获得积分10
29秒前
kosmos完成签到,获得积分10
30秒前
30秒前
Khaos_0929完成签到,获得积分10
31秒前
32秒前
zhangmeimei完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707