Structure-Texture Dual Preserving for Remote Sensing Image Super-Resolution

计算机科学 图像纹理 人工智能 计算机视觉 对偶(语法数字) 图像分辨率 纹理(宇宙学) 图像(数学) 纹理压缩 图像分割 模式识别(心理学) 遥感 地质学 艺术 文学类
作者
Kanghui Zhao,Tao Lü,Yanduo Zhang,Junjun Jiang,Zhongyuan Wang,Zixiang Xiong
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2024.3362880
摘要

Most of the existing remote sensing image Super-Resolution (SR) methods based on deep learning tend to learn the mapping from low-resolution (LR) images to High-Resolution (HR) images directly. But they ignore the potential structure and texture consistency of LR and HR spaces, which cause the loss of high-frequency information and produce artifacts. A structure-texture dual preserving (STP) method is proposed to solve this problem and generate pleasing details. Specifically, we propose a novel edge prior enhancement strategy that uses the edges of LR images and the proposed interactive supervised attention module (ISAM) to guide SR reconstruction. First, we introduce the LR edge map as an a prior structural expression for SR reconstruction, which further enhances the SR process with edge preservation capability. In addition, to obtain finer texture edge information, we propose a novel ISAM in order to correct the initial LR edge map with high frequency information. By introducing LR edges and ISAM-corrected HR edges, we build LR-HR edge mapping to preserve the consistency of LR and HR edge structure and texture, which provides supervised information for SR reconstruction. Finally, we explore the salient features of the image and its edges in the ascending space, and restored the difference between LR and HR images by residual and dense learning. A large number of experimental results on Draper and NWPU-RESISC45 datesets show that our model is superior to several advanced SR algorithms in both objective and subjective image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气凝云完成签到,获得积分10
2秒前
2秒前
上官若男应助ymym采纳,获得10
3秒前
Murphy应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
junfeiwang完成签到,获得积分10
5秒前
郝宝真发布了新的文献求助10
6秒前
小杜完成签到 ,获得积分10
6秒前
猪猪猪完成签到,获得积分10
6秒前
7秒前
8秒前
六个核桃发布了新的文献求助10
8秒前
9秒前
meimhuang完成签到,获得积分10
10秒前
12秒前
旺仔发布了新的文献求助10
12秒前
qq781208654完成签到,获得积分10
12秒前
星辰大海应助meimhuang采纳,获得10
14秒前
14秒前
15秒前
暴力比巴波完成签到,获得积分10
16秒前
热寂灬完成签到 ,获得积分10
17秒前
雾失楼台完成签到,获得积分10
18秒前
东原角完成签到 ,获得积分10
18秒前
rikarey344发布了新的文献求助10
19秒前
咖啡续命发布了新的文献求助10
20秒前
LHX完成签到 ,获得积分10
20秒前
寒冷静枫完成签到,获得积分10
21秒前
22秒前
旺仔完成签到,获得积分10
23秒前
小二郎应助晶晶采纳,获得10
23秒前
淡淡的幻竹完成签到,获得积分10
25秒前
在水一方应助徐什么宝采纳,获得10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187