Structure-Texture Dual Preserving for Remote Sensing Image Super-Resolution

计算机科学 图像纹理 人工智能 计算机视觉 对偶(语法数字) 图像分辨率 纹理(宇宙学) 图像(数学) 纹理压缩 图像分割 模式识别(心理学) 遥感 地质学 文学类 艺术
作者
Kanghui Zhao,Tao Lü,Yanduo Zhang,Junjun Jiang,Zhongyuan Wang,Zixiang Xiong
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2024.3362880
摘要

Most of the existing remote sensing image Super-Resolution (SR) methods based on deep learning tend to learn the mapping from low-resolution (LR) images to High-Resolution (HR) images directly. But they ignore the potential structure and texture consistency of LR and HR spaces, which cause the loss of high-frequency information and produce artifacts. A structure-texture dual preserving (STP) method is proposed to solve this problem and generate pleasing details. Specifically, we propose a novel edge prior enhancement strategy that uses the edges of LR images and the proposed interactive supervised attention module (ISAM) to guide SR reconstruction. First, we introduce the LR edge map as an a prior structural expression for SR reconstruction, which further enhances the SR process with edge preservation capability. In addition, to obtain finer texture edge information, we propose a novel ISAM in order to correct the initial LR edge map with high frequency information. By introducing LR edges and ISAM-corrected HR edges, we build LR-HR edge mapping to preserve the consistency of LR and HR edge structure and texture, which provides supervised information for SR reconstruction. Finally, we explore the salient features of the image and its edges in the ascending space, and restored the difference between LR and HR images by residual and dense learning. A large number of experimental results on Draper and NWPU-RESISC45 datesets show that our model is superior to several advanced SR algorithms in both objective and subjective image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
是滴是滴完成签到,获得积分10
2秒前
2秒前
2秒前
goofs发布了新的文献求助10
3秒前
shinn发布了新的文献求助10
6秒前
fffff发布了新的文献求助10
6秒前
Rita发布了新的文献求助10
7秒前
宁ning发布了新的文献求助10
8秒前
YYJ发布了新的文献求助10
11秒前
乐乐应助愤怒的映萱采纳,获得10
11秒前
温婉的夏烟完成签到,获得积分10
14秒前
14秒前
打打应助现代雁桃采纳,获得10
15秒前
大个应助zhangkx23采纳,获得10
18秒前
orixero应助你爱我我爱你采纳,获得50
18秒前
在水一方应助yiyiyiyiyi//采纳,获得10
18秒前
Hello应助蒋j采纳,获得10
19秒前
英俊罡完成签到 ,获得积分10
20秒前
20秒前
goofs完成签到,获得积分10
22秒前
22秒前
孙亦沈发布了新的文献求助10
22秒前
搜集达人应助MORNING采纳,获得10
23秒前
多情自古空余恨完成签到,获得积分10
23秒前
谨慎天问发布了新的文献求助10
23秒前
英俊罡关注了科研通微信公众号
23秒前
活力初蝶发布了新的文献求助10
24秒前
含糊的尔槐应助李鹏飞采纳,获得30
25秒前
25秒前
ding应助郭翔采纳,获得10
26秒前
28秒前
28秒前
zhangkx23发布了新的文献求助10
29秒前
29秒前
小蘑菇应助111采纳,获得10
30秒前
djiwisksk66应助fffff采纳,获得10
30秒前
31秒前
夏侯乘风发布了新的文献求助10
32秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952404
求助须知:如何正确求助?哪些是违规求助? 3497780
关于积分的说明 11088843
捐赠科研通 3228383
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303