LS-YOLO: A Novel Model for Detecting Multi-Scale Landslides with Remote Sensing Images

山崩 遥感 比例(比率) 计算机科学 计算机视觉 人工智能 地质学 地貌学 地图学 地理
作者
W. Zhang,Zhiheng Liu,Suiping Zhou,Wenjuan Qi,Xinjun Wu,Tianyu Zhang,Ling Han
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/jstars.2024.3363160
摘要

The landslide is a widespread and devastating natural disaster, posing serious threats to human life, security, and natural assets. Investigating efficient methods for accurate landslide detection with remote sensing images has important academic and practical implications. In this article, we proposed an LS-YOLO, a novel and effective model for landslide detection with remote sensing images. We first built a multi-scale landslide dataset (MSLD) and introduced random seeds in the data augmentation to increase data robustness. Considering the multi-scale characteristic of landslides in remote sensing images, a multi-scale feature extraction module is designed based on Efficient Channel Attention, Average Pooling, and Spatial Separable Convolution. To increase the receptive field of the model, dilated convolution is employed to the decoupled head. Specifically, the context enhancement module consisting of dilation convolutions is added to the decoupled head regression task branch, and then the improved decoupled head is to replace the coupled head in YOLOv5s. Extensive experiments show that our proposed model has high performance for multi-scale landslide detection, and outperforms other object detection models (Faster RCNN, SSD, EfficientDet-D0, YOLOv5s, YOLOv7, and YOLOX). Compared to the baseline model YOLOv5s, the AP of the LS-YOLO for detecting landslides has increased by 2.18% to 97.06%. The code and MSLD will be available at https://github.com/wenjieo/LS-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qc发布了新的文献求助10
1秒前
2秒前
Dece发布了新的文献求助10
3秒前
3秒前
han应助wood采纳,获得10
3秒前
坚定的傲易完成签到,获得积分10
4秒前
4秒前
爆米花应助优雅幻竹采纳,获得10
4秒前
4秒前
4秒前
SMIRTGIRL发布了新的文献求助10
4秒前
5秒前
喜东东完成签到 ,获得积分10
7秒前
精神小伙完成签到 ,获得积分10
7秒前
NexusExplorer应助SMIRTGIRL采纳,获得10
9秒前
小西瓜发布了新的文献求助10
9秒前
西奥完成签到,获得积分10
10秒前
张恒发布了新的文献求助10
10秒前
少爷发布了新的文献求助10
10秒前
12秒前
Dece完成签到,获得积分20
12秒前
12秒前
丘比特应助chen采纳,获得10
13秒前
13秒前
SAIL完成签到 ,获得积分10
16秒前
16秒前
优雅幻竹发布了新的文献求助10
17秒前
17秒前
18秒前
哈哈哈发布了新的文献求助10
18秒前
20秒前
21秒前
小马甲应助Hosea采纳,获得30
21秒前
21秒前
半岛铁盒完成签到,获得积分10
24秒前
优雅幻竹完成签到,获得积分10
24秒前
荼蘼如雪发布了新的文献求助10
27秒前
忐忑的凌丝完成签到,获得积分10
28秒前
bboyyujie完成签到,获得积分10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145219
求助须知:如何正确求助?哪些是违规求助? 2796603
关于积分的说明 7820639
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305309
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464