多硫化物
硫黄
过电位
分离器(采油)
锂(药物)
材料科学
微型多孔材料
化学工程
锂硫电池
金属有机骨架
无机化学
化学
吸附
复合材料
电化学
冶金
电极
有机化学
电解质
物理
医学
热力学
工程类
物理化学
内分泌学
作者
Cheng Zhou,Chenxu Dong,Weixiao Wang,Yu Tian,Chunli Shen,Kaijian Yan,Liqiang Mai,Xu Xu
摘要
Abstract Due to their extensive microporous structure, metal‐organic frameworks (MOFs) find widespread application in constructing modification layers, functioning as ion sieves. However, the modification layers prepared by existing methods feature gaps between MOFs that are noticeably larger than the inherent MOF pore dimensions. Polysulfides and lithium ions unavoidably permeate through these gaps, hindering the full exploitation of the structural advantages. Herein, an ultrathin (20 nm) and crack‐free MOF film is formed on the separator by atomic layer deposition for the first time. Based on the separator, the mechanism of different MOF layers has been verified by phase field simulation and in situ Raman spectroscopy. The results accurately prove that the MOF particle layer can relieve the shuttle of polysulfides, but it does not have the effect of homogenizing lithium ions. Only the ultrathin and crack‐free MOF film with proper pore size can act as the ion sieve for both polysulfides and lithium ions. As a result, under the test condition of 2 mA cm −2 –2 mAh cm −2 , the overpotential of the Li/Li symmetric battery is only 18 mV after 2500 h. The capacity retention rate of the lithium–sulfur battery is 95.6% after 500 cycles and 80% after 1000 cycles at 2 C.
科研通智能强力驱动
Strongly Powered by AbleSci AI