Global and Multiscale Aggregate Network for Saliency Object Detection in Optical Remote Sensing Images

遥感 骨料(复合) 计算机科学 对象(语法) 计算机视觉 人工智能 地质学 材料科学 纳米技术
作者
Lina Huo,Jingyao Hou,Jie Feng,Wei Wang,Jinsheng Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (4): 624-624 被引量:2
标识
DOI:10.3390/rs16040624
摘要

Salient Object Detection (SOD) is gradually applied in natural scene images. However, due to the apparent differences between optical remote sensing images and natural scene images, directly applying the SOD of natural scene images to optical remote sensing images has limited performance in global context information. Therefore, salient object detection in optical remote sensing images (ORSI-SOD) is challenging. Optical remote sensing images usually have large-scale variations. However, the vast majority of networks are based on Convolutional Neural Network (CNN) backbone networks such as VGG and ResNet, which can only extract local features. To address this problem, we designed a new model that employs a transformer-based backbone network capable of extracting global information and remote dependencies. A new framework is proposed for this question, named Global and Multiscale Aggregate Network for Saliency Object Detection in Optical Remote Sensing Images (GMANet). In this framework, the Pyramid Vision Transformer (PVT) is an encoder to catch remote dependencies. A Multiscale Attention Module (MAM) is introduced for extracting multiscale information. Meanwhile, a Global Guiled Brach (GGB) is used to learn the global context information and obtain the complete structure. Four MAMs are densely connected to this GGB. The Aggregate Refinement Module (ARM) is used to enrich the details of edge and low-level features. The ARM fuses global context information and encoder multilevel features to complement the details while the structure is complete. Extensive experiments on two public datasets show that our proposed framework GMANet outperforms 28 state-of-the-art methods on six evaluation metrics, especially E-measure and F-measure. It is because we apply a coarse-to-fine strategy to merge global context information and multiscale information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyyyyyyyyyyy完成签到,获得积分10
刚刚
1秒前
研友_8yN60L发布了新的文献求助30
1秒前
打打应助柳七采纳,获得10
2秒前
零零二完成签到 ,获得积分10
2秒前
韭菜盒子发布了新的文献求助10
3秒前
Maestro_S完成签到,获得积分0
3秒前
volzzz发布了新的文献求助10
3秒前
wgglegg完成签到,获得积分10
3秒前
科研通AI5应助小胖鱼采纳,获得10
3秒前
酷波er应助黄超采纳,获得10
3秒前
3秒前
大智若愚啊完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
彬彬发布了新的文献求助10
4秒前
健壮丹妗完成签到 ,获得积分10
4秒前
Orange应助铸一字错采纳,获得10
4秒前
4秒前
Accept应助阿烨采纳,获得10
6秒前
欧阳小枫发布了新的文献求助10
7秒前
8秒前
Heidi完成签到 ,获得积分10
8秒前
见雨鱼发布了新的文献求助10
8秒前
学术扛把子完成签到 ,获得积分10
8秒前
Lucas应助陈某某采纳,获得10
8秒前
尊敬的钥匙完成签到,获得积分10
9秒前
10秒前
10秒前
赘婿应助无情的白桃采纳,获得10
10秒前
习习应助zhu96114748采纳,获得10
11秒前
英姑应助韭菜盒子采纳,获得10
11秒前
jbzmm完成签到 ,获得积分10
11秒前
36456657应助虚安采纳,获得10
12秒前
张真狗完成签到,获得积分10
12秒前
zz完成签到,获得积分10
12秒前
深情安青应助xxx采纳,获得10
12秒前
12秒前
yqf完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740