Global and Multiscale Aggregate Network for Saliency Object Detection in Optical Remote Sensing Images

遥感 骨料(复合) 计算机科学 对象(语法) 计算机视觉 人工智能 地质学 材料科学 纳米技术
作者
Lina Huo,Jingyao Hou,Jie Feng,Wei Wang,Jinsheng Liu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (4): 624-624 被引量:2
标识
DOI:10.3390/rs16040624
摘要

Salient Object Detection (SOD) is gradually applied in natural scene images. However, due to the apparent differences between optical remote sensing images and natural scene images, directly applying the SOD of natural scene images to optical remote sensing images has limited performance in global context information. Therefore, salient object detection in optical remote sensing images (ORSI-SOD) is challenging. Optical remote sensing images usually have large-scale variations. However, the vast majority of networks are based on Convolutional Neural Network (CNN) backbone networks such as VGG and ResNet, which can only extract local features. To address this problem, we designed a new model that employs a transformer-based backbone network capable of extracting global information and remote dependencies. A new framework is proposed for this question, named Global and Multiscale Aggregate Network for Saliency Object Detection in Optical Remote Sensing Images (GMANet). In this framework, the Pyramid Vision Transformer (PVT) is an encoder to catch remote dependencies. A Multiscale Attention Module (MAM) is introduced for extracting multiscale information. Meanwhile, a Global Guiled Brach (GGB) is used to learn the global context information and obtain the complete structure. Four MAMs are densely connected to this GGB. The Aggregate Refinement Module (ARM) is used to enrich the details of edge and low-level features. The ARM fuses global context information and encoder multilevel features to complement the details while the structure is complete. Extensive experiments on two public datasets show that our proposed framework GMANet outperforms 28 state-of-the-art methods on six evaluation metrics, especially E-measure and F-measure. It is because we apply a coarse-to-fine strategy to merge global context information and multiscale information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
852应助图图采纳,获得10
1秒前
3秒前
4秒前
李昊完成签到,获得积分10
8秒前
迪克bin发布了新的文献求助10
8秒前
小鬼丶完成签到,获得积分20
8秒前
张宇轩发布了新的文献求助10
8秒前
9秒前
9秒前
佳佳应助小绵羊采纳,获得10
9秒前
hui_L发布了新的文献求助10
9秒前
M1982发布了新的文献求助10
13秒前
13秒前
14秒前
皓月星辰发布了新的文献求助10
17秒前
hui_L完成签到,获得积分20
17秒前
19秒前
19秒前
今后应助结实的小土豆采纳,获得10
20秒前
赘婿应助一一采纳,获得10
20秒前
xiaocui发布了新的文献求助10
20秒前
HouShipeng完成签到,获得积分10
22秒前
22秒前
24秒前
25秒前
HouShipeng发布了新的文献求助10
25秒前
xiaocui完成签到,获得积分10
26秒前
内向晓旋完成签到,获得积分10
26秒前
un发布了新的文献求助10
26秒前
科研小白发布了新的文献求助10
27秒前
菠菜发布了新的文献求助80
27秒前
Suliove完成签到,获得积分10
28秒前
29秒前
冷静凡天应助坦率的可仁采纳,获得10
29秒前
Ava应助科研張采纳,获得10
29秒前
聂先生完成签到,获得积分10
30秒前
一一发布了新的文献求助10
31秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579