Global and Multiscale Aggregate Network for Saliency Object Detection in Optical Remote Sensing Images

遥感 骨料(复合) 计算机科学 对象(语法) 计算机视觉 人工智能 地质学 材料科学 纳米技术
作者
Lina Huo,Jingyao Hou,Jie Feng,Wei Wang,Jinsheng Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (4): 624-624 被引量:2
标识
DOI:10.3390/rs16040624
摘要

Salient Object Detection (SOD) is gradually applied in natural scene images. However, due to the apparent differences between optical remote sensing images and natural scene images, directly applying the SOD of natural scene images to optical remote sensing images has limited performance in global context information. Therefore, salient object detection in optical remote sensing images (ORSI-SOD) is challenging. Optical remote sensing images usually have large-scale variations. However, the vast majority of networks are based on Convolutional Neural Network (CNN) backbone networks such as VGG and ResNet, which can only extract local features. To address this problem, we designed a new model that employs a transformer-based backbone network capable of extracting global information and remote dependencies. A new framework is proposed for this question, named Global and Multiscale Aggregate Network for Saliency Object Detection in Optical Remote Sensing Images (GMANet). In this framework, the Pyramid Vision Transformer (PVT) is an encoder to catch remote dependencies. A Multiscale Attention Module (MAM) is introduced for extracting multiscale information. Meanwhile, a Global Guiled Brach (GGB) is used to learn the global context information and obtain the complete structure. Four MAMs are densely connected to this GGB. The Aggregate Refinement Module (ARM) is used to enrich the details of edge and low-level features. The ARM fuses global context information and encoder multilevel features to complement the details while the structure is complete. Extensive experiments on two public datasets show that our proposed framework GMANet outperforms 28 state-of-the-art methods on six evaluation metrics, especially E-measure and F-measure. It is because we apply a coarse-to-fine strategy to merge global context information and multiscale information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助hui采纳,获得10
刚刚
changnan完成签到,获得积分20
2秒前
潇湘雪月完成签到,获得积分10
4秒前
深情安青应助琢钰采纳,获得10
4秒前
112发布了新的文献求助10
4秒前
5秒前
情怀应助Qssai采纳,获得10
7秒前
笑相完成签到,获得积分10
7秒前
changnan发布了新的文献求助10
7秒前
8秒前
Ni发布了新的文献求助10
9秒前
10秒前
10秒前
呼呼发布了新的文献求助10
11秒前
hulian发布了新的文献求助10
12秒前
零可林应助悬铃木采纳,获得10
12秒前
13秒前
13秒前
13秒前
临床菜鸟完成签到 ,获得积分10
13秒前
14秒前
长情萤完成签到,获得积分10
14秒前
琢钰发布了新的文献求助10
14秒前
飞虎发布了新的文献求助10
15秒前
歪比巴卜发布了新的文献求助10
15秒前
阿良发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
19秒前
19秒前
天真璎完成签到,获得积分10
19秒前
靖宇发布了新的文献求助10
19秒前
曦颜发布了新的文献求助20
20秒前
Y神完成签到 ,获得积分10
21秒前
呼呼完成签到,获得积分10
21秒前
城南花已开完成签到,获得积分10
21秒前
汉堡包应助歪比巴卜采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589963
求助须知:如何正确求助?哪些是违规求助? 4674416
关于积分的说明 14793871
捐赠科研通 4629469
什么是DOI,文献DOI怎么找? 2532480
邀请新用户注册赠送积分活动 1501159
关于科研通互助平台的介绍 1468527