Attention-SP-LSTM-FIG: An explainable neural network model for productivity prediction in aircraft final assembly lines

人工神经网络 生产力 人工智能 计算机科学 装配线 工程类 机械工程 宏观经济学 经济
作者
Changjian Jiang,Jie Zhang,Wenbin Tang,G. H. Gao,Yukan Hou
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102389-102389
标识
DOI:10.1016/j.aei.2024.102389
摘要

The use of machine learning models for productivity prediction in complex manufacturing systems has garnered significant attention. However, the implementation of conventional black-box machine learning models is challenging due to the complexity and limited data availability in aircraft final assembly lines. These challenges stem from a lack of explainability, leading to compromised accuracy and diminished trustworthiness. To address this issue, this paper proposes an explainable neural network model, the Attention-SP-LSTM-FIG, specifically designed for productivity prediction in aircraft final assembly lines. First, the serial-parallel LSTM is utilized to map the process sequence within each assembly station, and a customized attention mechanism maps the requirements of workers and materials. This process results in independent sub-models corresponding to each station. Subsequently, the outputs from each sub-model are combined using a specially-designed final integrated gate to produce the final output. Finally, a post-hoc analysis of the weight data in the model is performed following the backpropagation order to identify the various production bottlenecks in the assembly line. The performance of the proposed model has been evaluated through an industrial case study. In terms of accuracy, the Attention-SP-LSTM-FIG surpasses other benchmark neural network models in terms of error, correlation, and precision metrics. Regarding explainability, the Attention-SP-LSTM-FIG can precisely identify bottlenecks for practitioners, thus facilitating a better understanding of the rationale behind the model's outputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ardejiang发布了新的文献求助10
刚刚
刚刚
会飞的鱼完成签到,获得积分10
1秒前
2秒前
Ava应助昏睡的乌冬面采纳,获得10
2秒前
什么关注了科研通微信公众号
3秒前
靓丽访枫完成签到 ,获得积分10
3秒前
瑞水南郡完成签到,获得积分10
3秒前
4秒前
YJY完成签到,获得积分20
5秒前
xuhuahua发布了新的文献求助10
6秒前
巫马千秋完成签到,获得积分10
6秒前
香蕉觅云应助淡淡的元霜采纳,获得10
6秒前
nater4ver完成签到,获得积分10
7秒前
王嘉尔的小迷妹完成签到,获得积分10
7秒前
8秒前
maox1aoxin应助无奈的老姆采纳,获得20
9秒前
在水一方应助吃猫的鱼采纳,获得10
9秒前
yy发布了新的文献求助10
9秒前
10秒前
饺子王完成签到 ,获得积分10
11秒前
李健的小迷弟应助ardejiang采纳,获得10
12秒前
13秒前
14秒前
苹果饼干发布了新的文献求助30
14秒前
Dabaozi完成签到,获得积分10
14秒前
15秒前
jijiahao完成签到,获得积分10
15秒前
zhaogl完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
起风了发布了新的文献求助10
16秒前
没有名字完成签到,获得积分10
19秒前
JamesPei应助Summer采纳,获得10
19秒前
麦地娜完成签到 ,获得积分10
19秒前
FashionBoy应助李昕123采纳,获得10
20秒前
21秒前
科研通AI2S应助快乐的钥匙采纳,获得10
21秒前
AOPs发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154407
求助须知:如何正确求助?哪些是违规求助? 2805321
关于积分的说明 7864166
捐赠科研通 2463472
什么是DOI,文献DOI怎么找? 1311341
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821