Wind-induced response of rapeseed seedling stage and lodging prediction based on UAV imagery and machine learning methods

油菜籽 反向传播 人工神经网络 主成分分析 农业工程 支持向量机 归一化差异植被指数 人工智能 机器学习 计算机科学 环境科学 农学 工程类 叶面积指数 生物
作者
Qilong Wang,Yilin Ren,HaoJie Wang,Jiansong Wang,Yang Yang,Qiangqiang Zhang,Guangsheng Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:217: 108637-108637 被引量:3
标识
DOI:10.1016/j.compag.2024.108637
摘要

Farmers commonly enhance rapeseed grain yield by increasing nitrogen fertilizer application and planting density, but this raises lodging susceptibility. Lodging in rapeseed not only substantially diminishes yield and quality but also hampers mechanized harvesting. Thus, timely and accurate prediction of rapeseed lodging resistance, along with targeted field management, is imperative for enhanced productivity. However, current research on timely and accurate prediction of rapeseed lodging resistance remains limited. This study employs unmanned aerial vehicle (UAV) imagery in conjunction with machine learning techniques. UAVs equipped with cameras and downward airflow stimulation are utilized to capture wind-induced responses in rapeseed leaves and extract relevant parameters. Wind-induced response characteristics of rapeseed under different cultivation conditions are analyzed, the relationship between rapeseed vegetation indices and intrinsic properties is explored, and the obtained parameters are subjected to principal component analysis. Using the maturity stage rapeseed lodging index as the output, a predictive model for early-stage lodging is established, comparing the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP), Particle Swarm Optimization-optimized Backpropagation Neural Network (PSO-BP), and Cuckoo Search-optimized Support Vector Machine (CS-SVM) models. The results reveal a significant correlation between Rapeseed seedling-stage wind-induced response characteristics, certain vegetation indices, and lodging index. Three lodging index prediction models are created using the first four principal components from the analysis, yielding promising outcomes for all three periods (5-leaf stage, 10-leaf stage, and 10 days after the 10-leaf stage) and overall predictions. Among these models, the PSO-BP model exhibits superior performance in predicting rapeseed lodging index (R2 = 0.67, RMSE = 0.464, MAPE = 12.15). Therefore, leveraging wind-induced response characteristics and vegetation indices during the early growth stage enables a certain level of prediction for rapeseed lodging resistance in the mature stage. This study's findings contribute theoretical and technical support to the intelligent and precise management of large-scale rapeseed production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴智健完成签到,获得积分10
1秒前
2秒前
双休完成签到,获得积分10
2秒前
qq完成签到 ,获得积分10
4秒前
5秒前
5秒前
飘逸问薇完成签到 ,获得积分10
6秒前
吴智健发布了新的文献求助10
6秒前
zyqy完成签到 ,获得积分10
7秒前
一颗松应助AN2022采纳,获得30
7秒前
7秒前
彩色的松发布了新的文献求助10
8秒前
宁秋水完成签到 ,获得积分10
9秒前
zxy完成签到,获得积分10
9秒前
9秒前
一口锅完成签到,获得积分10
9秒前
念与惜完成签到 ,获得积分10
10秒前
Sssmmmyy完成签到,获得积分10
10秒前
Xiaojiu完成签到 ,获得积分10
11秒前
11秒前
11秒前
研友_nxeAlZ完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
实验室应助贾哲宇采纳,获得30
15秒前
16秒前
科研通AI6应助彩色的松采纳,获得10
16秒前
汉堡包应助月亮采纳,获得10
17秒前
19秒前
柠觉呢发布了新的文献求助10
19秒前
CipherSage应助无私的梦凡采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
小马甲应助Flynn采纳,获得10
22秒前
浮游应助xuke采纳,获得10
22秒前
22秒前
23秒前
南冥完成签到 ,获得积分10
26秒前
26秒前
星辰发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069075
求助须知:如何正确求助?哪些是违规求助? 4290578
关于积分的说明 13368063
捐赠科研通 4110562
什么是DOI,文献DOI怎么找? 2251023
邀请新用户注册赠送积分活动 1256227
关于科研通互助平台的介绍 1188698