Wind-induced response of rapeseed seedling stage and lodging prediction based on UAV imagery and machine learning methods

油菜籽 反向传播 人工神经网络 主成分分析 农业工程 支持向量机 归一化差异植被指数 人工智能 机器学习 计算机科学 环境科学 农学 工程类 叶面积指数 生物
作者
Qilong Wang,Yilin Ren,HaoJie Wang,Jiansong Wang,Yang Yang,Qiangqiang Zhang,Guangsheng Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108637-108637 被引量:1
标识
DOI:10.1016/j.compag.2024.108637
摘要

Farmers commonly enhance rapeseed grain yield by increasing nitrogen fertilizer application and planting density, but this raises lodging susceptibility. Lodging in rapeseed not only substantially diminishes yield and quality but also hampers mechanized harvesting. Thus, timely and accurate prediction of rapeseed lodging resistance, along with targeted field management, is imperative for enhanced productivity. However, current research on timely and accurate prediction of rapeseed lodging resistance remains limited. This study employs unmanned aerial vehicle (UAV) imagery in conjunction with machine learning techniques. UAVs equipped with cameras and downward airflow stimulation are utilized to capture wind-induced responses in rapeseed leaves and extract relevant parameters. Wind-induced response characteristics of rapeseed under different cultivation conditions are analyzed, the relationship between rapeseed vegetation indices and intrinsic properties is explored, and the obtained parameters are subjected to principal component analysis. Using the maturity stage rapeseed lodging index as the output, a predictive model for early-stage lodging is established, comparing the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP), Particle Swarm Optimization-optimized Backpropagation Neural Network (PSO-BP), and Cuckoo Search-optimized Support Vector Machine (CS-SVM) models. The results reveal a significant correlation between Rapeseed seedling-stage wind-induced response characteristics, certain vegetation indices, and lodging index. Three lodging index prediction models are created using the first four principal components from the analysis, yielding promising outcomes for all three periods (5-leaf stage, 10-leaf stage, and 10 days after the 10-leaf stage) and overall predictions. Among these models, the PSO-BP model exhibits superior performance in predicting rapeseed lodging index (R2 = 0.67, RMSE = 0.464, MAPE = 12.15). Therefore, leveraging wind-induced response characteristics and vegetation indices during the early growth stage enables a certain level of prediction for rapeseed lodging resistance in the mature stage. This study's findings contribute theoretical and technical support to the intelligent and precise management of large-scale rapeseed production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nv2krn发布了新的文献求助20
刚刚
深情安青应助DCH采纳,获得30
刚刚
刚刚
科研通AI2S应助失眠朋友采纳,获得10
刚刚
原野完成签到,获得积分10
1秒前
鹿友菌完成签到,获得积分10
1秒前
1秒前
2秒前
张小盒完成签到,获得积分10
2秒前
Orange应助云无心采纳,获得10
2秒前
高挑的果汁完成签到,获得积分10
3秒前
科研通AI2S应助xdf采纳,获得10
4秒前
SMY1008611完成签到,获得积分10
4秒前
文献荒发布了新的文献求助10
5秒前
5秒前
853225598完成签到,获得积分10
5秒前
dmr发布了新的文献求助10
5秒前
星空物语完成签到,获得积分10
5秒前
yiyiluo完成签到,获得积分10
5秒前
彭于晏应助活泼的海豚采纳,获得10
6秒前
bear应助原野采纳,获得30
6秒前
小小完成签到 ,获得积分10
8秒前
8秒前
爱静静应助nhhdhhn采纳,获得10
8秒前
eryaclover完成签到,获得积分10
8秒前
Ganlou应助nhhdhhn采纳,获得10
8秒前
小鱼爱吃肉应助nhhdhhn采纳,获得10
8秒前
8秒前
9秒前
婷婷发布了新的文献求助50
9秒前
yiyiluo发布了新的文献求助10
9秒前
香蕉觅云应助哭泣的冰海采纳,获得10
10秒前
10秒前
抖抖狸发布了新的文献求助10
12秒前
飞鱼发布了新的文献求助10
13秒前
伊一完成签到,获得积分10
14秒前
李爱国应助Survivor采纳,获得10
16秒前
17秒前
17秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547