Wind-induced response of rapeseed seedling stage and lodging prediction based on UAV imagery and machine learning methods

油菜籽 反向传播 人工神经网络 主成分分析 农业工程 支持向量机 归一化差异植被指数 人工智能 机器学习 计算机科学 环境科学 农学 工程类 叶面积指数 生物
作者
Qilong Wang,Yilin Ren,HaoJie Wang,Jiansong Wang,Yang Yang,Qiangqiang Zhang,Guangsheng Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108637-108637 被引量:3
标识
DOI:10.1016/j.compag.2024.108637
摘要

Farmers commonly enhance rapeseed grain yield by increasing nitrogen fertilizer application and planting density, but this raises lodging susceptibility. Lodging in rapeseed not only substantially diminishes yield and quality but also hampers mechanized harvesting. Thus, timely and accurate prediction of rapeseed lodging resistance, along with targeted field management, is imperative for enhanced productivity. However, current research on timely and accurate prediction of rapeseed lodging resistance remains limited. This study employs unmanned aerial vehicle (UAV) imagery in conjunction with machine learning techniques. UAVs equipped with cameras and downward airflow stimulation are utilized to capture wind-induced responses in rapeseed leaves and extract relevant parameters. Wind-induced response characteristics of rapeseed under different cultivation conditions are analyzed, the relationship between rapeseed vegetation indices and intrinsic properties is explored, and the obtained parameters are subjected to principal component analysis. Using the maturity stage rapeseed lodging index as the output, a predictive model for early-stage lodging is established, comparing the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP), Particle Swarm Optimization-optimized Backpropagation Neural Network (PSO-BP), and Cuckoo Search-optimized Support Vector Machine (CS-SVM) models. The results reveal a significant correlation between Rapeseed seedling-stage wind-induced response characteristics, certain vegetation indices, and lodging index. Three lodging index prediction models are created using the first four principal components from the analysis, yielding promising outcomes for all three periods (5-leaf stage, 10-leaf stage, and 10 days after the 10-leaf stage) and overall predictions. Among these models, the PSO-BP model exhibits superior performance in predicting rapeseed lodging index (R2 = 0.67, RMSE = 0.464, MAPE = 12.15). Therefore, leveraging wind-induced response characteristics and vegetation indices during the early growth stage enables a certain level of prediction for rapeseed lodging resistance in the mature stage. This study's findings contribute theoretical and technical support to the intelligent and precise management of large-scale rapeseed production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后雪枫完成签到,获得积分10
1秒前
1秒前
fqiiii发布了新的文献求助10
1秒前
2秒前
2秒前
水泥喵喵完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
研友_7ZeNx8发布了新的文献求助10
4秒前
NexusExplorer应助梵高采纳,获得10
4秒前
迷人的Jack完成签到,获得积分20
4秒前
Ava应助不抛弃不放弃采纳,获得20
4秒前
fairy发布了新的文献求助10
5秒前
乐乐应助yjy采纳,获得10
5秒前
小二郎应助xiao采纳,获得10
5秒前
结实半邪完成签到 ,获得积分10
5秒前
6秒前
学术猪八戒完成签到,获得积分10
6秒前
6秒前
ljx完成签到,获得积分10
6秒前
JI完成签到,获得积分10
7秒前
7秒前
极客晨风发布了新的文献求助10
8秒前
8秒前
Richard发布了新的文献求助10
8秒前
缓慢平蓝发布了新的文献求助10
8秒前
无敌的我发布了新的文献求助10
8秒前
8秒前
哈基米发布了新的文献求助10
9秒前
自强不息发布了新的文献求助10
9秒前
科研通AI6应助ding采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
小马甲应助水泥喵喵采纳,获得10
11秒前
11秒前
11秒前
12秒前
lili发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249