Wind-induced response of rapeseed seedling stage and lodging prediction based on UAV imagery and machine learning methods

油菜籽 反向传播 人工神经网络 主成分分析 农业工程 支持向量机 归一化差异植被指数 人工智能 机器学习 计算机科学 环境科学 农学 工程类 叶面积指数 生物
作者
Qilong Wang,Yilin Ren,HaoJie Wang,Jiansong Wang,Yang Yang,Qiangqiang Zhang,Guangsheng Zhou
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108637-108637 被引量:1
标识
DOI:10.1016/j.compag.2024.108637
摘要

Farmers commonly enhance rapeseed grain yield by increasing nitrogen fertilizer application and planting density, but this raises lodging susceptibility. Lodging in rapeseed not only substantially diminishes yield and quality but also hampers mechanized harvesting. Thus, timely and accurate prediction of rapeseed lodging resistance, along with targeted field management, is imperative for enhanced productivity. However, current research on timely and accurate prediction of rapeseed lodging resistance remains limited. This study employs unmanned aerial vehicle (UAV) imagery in conjunction with machine learning techniques. UAVs equipped with cameras and downward airflow stimulation are utilized to capture wind-induced responses in rapeseed leaves and extract relevant parameters. Wind-induced response characteristics of rapeseed under different cultivation conditions are analyzed, the relationship between rapeseed vegetation indices and intrinsic properties is explored, and the obtained parameters are subjected to principal component analysis. Using the maturity stage rapeseed lodging index as the output, a predictive model for early-stage lodging is established, comparing the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP), Particle Swarm Optimization-optimized Backpropagation Neural Network (PSO-BP), and Cuckoo Search-optimized Support Vector Machine (CS-SVM) models. The results reveal a significant correlation between Rapeseed seedling-stage wind-induced response characteristics, certain vegetation indices, and lodging index. Three lodging index prediction models are created using the first four principal components from the analysis, yielding promising outcomes for all three periods (5-leaf stage, 10-leaf stage, and 10 days after the 10-leaf stage) and overall predictions. Among these models, the PSO-BP model exhibits superior performance in predicting rapeseed lodging index (R2 = 0.67, RMSE = 0.464, MAPE = 12.15). Therefore, leveraging wind-induced response characteristics and vegetation indices during the early growth stage enables a certain level of prediction for rapeseed lodging resistance in the mature stage. This study's findings contribute theoretical and technical support to the intelligent and precise management of large-scale rapeseed production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的乐松完成签到,获得积分10
1秒前
星星泡饭发布了新的文献求助10
1秒前
着急的语儿完成签到,获得积分10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
差劲先森完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科目三应助goodgoodstudy采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
Wu发布了新的文献求助10
2秒前
2秒前
lemon应助科研通管家采纳,获得20
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
打打应助聪聪great采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
无名完成签到,获得积分10
3秒前
打打应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得40
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
只A不B应助科研通管家采纳,获得30
3秒前
3秒前
SYanan完成签到 ,获得积分10
4秒前
Owen应助大方嵩采纳,获得10
4秒前
5秒前
5秒前
5秒前
耍酷花卷发布了新的文献求助10
5秒前
孟陬十一完成签到,获得积分10
6秒前
6秒前
搞怪的凡蕾完成签到,获得积分10
7秒前
8秒前
8秒前
万能图书馆应助刘星星采纳,获得10
9秒前
Ting完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762