EgoMUIL: Enhancing Spatio-temporal User Identity Linkage in Location-Based Social Networks with Ego-Mo Hypergraph

计算机科学 地点 图形 超图 社交网络(社会语言学) 理论计算机科学 联动装置(软件) 链接数据 相似性(几何) 数据挖掘 社会化媒体 情报检索 人工智能 万维网 数学 语义网 化学 哲学 离散数学 图像(数学) 基因 生物化学 语言学
作者
Haojun Huang,Fengxiang Ding,Hao Yin,Gaoyang Liu,Chen Wang,Dapeng Wu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8341-8354 被引量:2
标识
DOI:10.1109/tmc.2023.3345312
摘要

Users tend to own multiple accounts on different location-based social network (LBSN) platforms, and they typically engage with diverse social circles on each platform within the same locations. Consequently, linking these accounts across separate networks becomes essential, playing a critical role in information fusion. Previous works accomplishing user identity linkage (UIL) utilize individual mobility records, which are significantly affected by the issue of data scarcity. In this paper, we propose EgoMUIL, a heterogeneous graph embedding approach specifically devised for information propagation, aiming to alleviate the scarcity problem to some extent. Considering that follow relations of respective networks also hold great significance for the UIL task, we are inspired to enrich individual limited mobility records through follow relations. Our preliminary research reveals that direct common follow relations are quite insufficient. Since the followers with the same spatio-temporal mode tend to have social connections, we first mine closely-related users for each user through topology and locality similarity, generating respective cross-domain ego-networks. Subsequently, we construct a heterogeneous ego-mo hypergraph consisting of mobility and ego-networks. We propose a novel graph convolutional network (GCN)-based approach to learn user representations, which enables the aggregation of information from surrounding nodes, incorporating topological similarities, stay locality similarities, and co-occurrence frequencies. The resulting embeddings provide comprehensive representations of users and locations, capturing their characteristics and relationships across platforms, which further facilitates the UIL task. Our experimental results on real-world check-in datasets from Foursquare and Twitter demonstrate that EgoMUIL outperforms the state-of-the-art methods on the UIL task. Notably, EgoMUIL exhibits superior performance in scenarios involving limited check-in records and follow relations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武外套发布了新的文献求助10
刚刚
隐形曼青应助T_MC郭采纳,获得10
刚刚
搜集达人应助w。采纳,获得10
1秒前
hanqianqian完成签到,获得积分20
2秒前
wanci应助dd采纳,获得10
4秒前
小猪啵比完成签到 ,获得积分10
4秒前
科目三应助YY采纳,获得10
5秒前
5秒前
英姑应助coffee采纳,获得10
5秒前
daoyi应助狂野的笑天采纳,获得30
6秒前
6秒前
bnhh完成签到,获得积分10
7秒前
7秒前
LSS发布了新的文献求助10
14秒前
14秒前
乐乐应助yangyajie采纳,获得10
15秒前
李健应助打工人采纳,获得10
17秒前
yxy完成签到,获得积分10
19秒前
21秒前
23秒前
23秒前
科目三应助乐666采纳,获得10
26秒前
zy发布了新的文献求助10
27秒前
芒琪发布了新的文献求助10
27秒前
领导范儿应助Makta采纳,获得10
27秒前
28秒前
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
秋糜发布了新的文献求助10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
黎明应助科研通管家采纳,获得10
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
iNk应助科研通管家采纳,获得20
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
不能当饭吃完成签到,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559873
求助须知:如何正确求助?哪些是违规求助? 3134315
关于积分的说明 9406574
捐赠科研通 2834399
什么是DOI,文献DOI怎么找? 1558074
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522