A power regulation strategy for heat pipe cooled reactors based on deep learning and hybrid data-driven optimization algorithm

功率(物理) 过程(计算) 工程类 人工神经网络 计算机科学 控制工程 人工智能 量子力学 操作系统 物理
作者
Mengqi Huang,Changhong Peng,Zhengyu Du,Yu Liu
出处
期刊:Energy [Elsevier BV]
卷期号:289: 130050-130050 被引量:3
标识
DOI:10.1016/j.energy.2023.130050
摘要

Heat pipe cooled reactors are ideal for use in remote or isolated locations as dependable, small-scale power sources, thanks to their excellent design characteristics. To tackle real-time changes in power demand within a dynamic environment, this research proposes a decision-making strategy for regulating the power of heat pipe cooled reactors. The strategy is founded on a hybrid data-driven optimization algorithm and deep learning, enabling the attainment of safe and efficient control of heat pipe cooled reactors under specified power requirements. Initially, a power forecast model founded on artificial neural networks for heat pipe cooled reactors is established. Then, an appraisal standard for power regulation arrangements, combining reactor safety and operational effectiveness, is developed based on the utility theory. Finally, this study introduces a hybrid data-driven optimization algorithm that efficiently identifies the power regulation scheme with the greatest utility for given power demands. The proposed technique's effectiveness was demonstrated by selecting the power regulation process of the MegaPower heat pipe cooled reactor as an example. The results indicate that the strategy can make steady, accurate, and near-optimal power regulation decisions for any power demand within 20 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞学术的小傻子完成签到,获得积分10
刚刚
wanci应助HJJHJH采纳,获得20
4秒前
专注的水壶完成签到 ,获得积分10
6秒前
Bob完成签到 ,获得积分10
6秒前
phy完成签到,获得积分10
6秒前
10秒前
10秒前
LX77bx完成签到,获得积分10
12秒前
外向的醉易完成签到,获得积分10
13秒前
SharonDu完成签到 ,获得积分10
14秒前
15秒前
yuncong323完成签到,获得积分10
16秒前
huohuo完成签到,获得积分10
18秒前
CB完成签到,获得积分10
19秒前
19秒前
20秒前
儒雅路人完成签到,获得积分10
21秒前
OLDBLOW完成签到,获得积分10
22秒前
22秒前
liupangzi完成签到,获得积分10
22秒前
wang完成签到,获得积分10
22秒前
23秒前
Catherkk发布了新的文献求助10
23秒前
lcdamoy完成签到,获得积分10
24秒前
钱浩然发布了新的文献求助10
24秒前
烊烊发布了新的文献求助10
25秒前
十曰完成签到,获得积分10
30秒前
jjjjchou完成签到,获得积分10
31秒前
虚心的不二完成签到 ,获得积分10
33秒前
xuzj应助科研通管家采纳,获得10
34秒前
小马甲应助科研通管家采纳,获得10
34秒前
34秒前
思源应助科研通管家采纳,获得10
34秒前
34秒前
研友_VZG7GZ应助科研通管家采纳,获得10
34秒前
fang应助科研通管家采纳,获得10
34秒前
隐形曼青应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
FashionBoy应助科研通管家采纳,获得10
34秒前
shiizii应助科研通管家采纳,获得10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022