Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation

材料科学 脊髓损伤 神经干细胞 自愈水凝胶 小胶质细胞 脊髓 生物医学工程 炎症 神经科学 细胞生物学 干细胞 高分子化学 生物 免疫学 医学
作者
Mingshan Liu,Wencan Zhang,Shuwei Han,Dapeng Zhang,Xiaolong Zhou,Xianzheng Guo,Jia Man,Haifeng Wang,Lin Jin,Shiqing Feng,Zhijian Wei
出处
期刊:Advanced Materials [Wiley]
被引量:5
标识
DOI:10.1002/adma.202313672
摘要

Abstract Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double‐crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti‐inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安青牛应助dhjskak采纳,获得20
刚刚
1秒前
1秒前
木香完成签到,获得积分10
1秒前
nn发布了新的文献求助10
1秒前
1秒前
无限山晴完成签到,获得积分10
1秒前
2秒前
2秒前
001关闭了001文献求助
5秒前
落桑发布了新的文献求助10
6秒前
无花果应助积极问晴采纳,获得10
6秒前
zrq发布了新的文献求助10
7秒前
7秒前
无花果应助星星气球采纳,获得10
7秒前
7秒前
在水一方应助zhq采纳,获得10
8秒前
8秒前
8秒前
cccc应助派大星采纳,获得10
8秒前
aaaaaa发布了新的文献求助10
9秒前
trap发布了新的文献求助10
9秒前
10秒前
李爱国应助兴奋的映菡采纳,获得10
10秒前
英俊的铭应助听话的飞松采纳,获得10
11秒前
李爱国应助InTroLLe采纳,获得10
12秒前
14秒前
默茗发布了新的文献求助10
15秒前
15秒前
英俊的小松鼠完成签到,获得积分10
15秒前
我系吖前关注了科研通微信公众号
16秒前
17秒前
一兜兜糖发布了新的文献求助20
19秒前
星辰大海应助今天摸了吗采纳,获得10
19秒前
19秒前
19秒前
yyymmma应助Liza0711采纳,获得10
19秒前
19秒前
复杂颦完成签到,获得积分10
20秒前
orixero应助张三采纳,获得10
21秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997229
求助须知:如何正确求助?哪些是违规求助? 2657705
关于积分的说明 7193807
捐赠科研通 2293035
什么是DOI,文献DOI怎么找? 1215732
科研通“疑难数据库(出版商)”最低求助积分说明 593300
版权声明 592825