ResNet deep models and transfer learning technique for classification and quality detection of rice cultivars

学习迁移 计算机科学 人工智能 栽培 深度学习 质量(理念) 机器学习 残差神经网络 模式识别(心理学) 园艺 生物 哲学 认识论
作者
Mohammad Razavi,Samira Mavaddati,Hamidreza Koohi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123276-123276 被引量:14
标识
DOI:10.1016/j.eswa.2024.123276
摘要

Rice classification and quality detection are therefore crucial for ensuring the safety and quality of rice for human consumption and reducing the financial losses associated with rice spoilage. Accurate and efficient rice classification and quality detection techniques can help farmers, traders, and regulators identify the most valuable and high-quality rice cultivars, enabling them to make better crop management, storage, and transportation decisions. A system to automatically classify different types of rice grains is a valuable and crucial area of research in modern agriculture. Various methodologies have been used in recent years to identify agricultural products, including color-based, texture-based, and statistical-based features. This paper introduces a deep learning-based classification algorithm using ResNet deep models to represent the structural content of different varieties of rice grains. ResNet is a proven deep-learning model with impressive performance in various computer vision tasks, including signal classification. ResNet is adept at learning rich representations of images and generalizing them to new data making it a reliable choice for rice classification by combining residual learning and a well-structured architecture. In this paper, different architectures of ResNet, such as ResNet34, ResNet50, and a transferred version of ResNet50 using a transfer learning technique, are designed for performance evaluation in rice classification and quality detection problems. The performance of the proposed algorithm is compared with the other deep learning models and dictionary learning-based algorithms. The results demonstrate that the proposed algorithm using ResNet50 deep models and transfer learning accurately identified six rice varieties with an accuracy rate of over 99.85 %. The algorithm also accurately detects rice quality for different percentages of combination with other rice varieties with an average accuracy of 98.13 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
万能图书馆应助苏打汽水采纳,获得10
2秒前
凌代萱发布了新的文献求助10
3秒前
JONY完成签到 ,获得积分10
4秒前
樱桃味的火苗完成签到,获得积分10
6秒前
Emper发布了新的文献求助10
7秒前
划水发布了新的文献求助10
9秒前
张志伟发布了新的文献求助10
11秒前
qrj发布了新的文献求助10
11秒前
肃清夏安完成签到,获得积分10
12秒前
16秒前
搜集达人应助RW采纳,获得10
17秒前
静影沉璧发布了新的文献求助10
18秒前
bkagyin应助Peng采纳,获得10
20秒前
阿坤完成签到,获得积分20
21秒前
金陵第一大美女完成签到,获得积分10
22秒前
26秒前
科研通AI2S应助无限大树采纳,获得10
26秒前
文静不斜完成签到,获得积分10
30秒前
32秒前
宰宰小熊发布了新的文献求助10
32秒前
8R60d8应助科研通管家采纳,获得20
32秒前
NPC应助科研通管家采纳,获得30
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
隐形曼青应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
8R60d8应助科研通管家采纳,获得10
33秒前
FashionBoy应助奋斗的杰采纳,获得10
43秒前
44秒前
21完成签到,获得积分10
47秒前
ssk完成签到,获得积分10
48秒前
星希完成签到 ,获得积分10
49秒前
科研通AI2S应助无限大树采纳,获得10
49秒前
Cwx2020完成签到,获得积分10
50秒前
sky发布了新的文献求助20
53秒前
qym完成签到,获得积分10
54秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129