已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Missing Well-Logs Imputation Method Based on Conditional Denoising Diffusion Probabilistic Models

插补(统计学) 概率逻辑 计算机科学 缺少数据 数据挖掘 人工智能 机器学习
作者
Han Meng,Botao Lin,Ruxin Zhang,Yan Jin
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (05): 2165-2180
标识
DOI:10.2118/219452-pa
摘要

Summary Well logs comprise sequential data detailing the geological properties of formations at varying depths encountered during drilling. They are fundamental for various applications in the petroleum industry. However, acquired well logs often contain noise and missing data, which impedes their utility. To address this, numerous methods have been developed to impute missing components in well logs, ranging from traditional deterministic methods to modern data-driven models. Despite their effectiveness, these methods face several challenges. First, many are deterministic, lacking the ability to capture and represent the inherent uncertainties in the data. In addition, they often require complete logging data as input, which presents challenges in data sets with substantial missing data. Moreover, most are predictive models designed with specific targets that require retraining for different variables, which limits their versatility in handling data sets with diverse missing components. This work proposes the use of a generative model based on the conditional denoising diffusion probabilistic model (CDDPM) to impute missing components within well logs. The CDDPM offers several advantages. Its inherent probabilistic nature allows it to capture uncertainties in the data, providing predictions in the form of probability distributions rather than single-point estimates. This helps engineers make more robust and informed decisions in practice, thus mitigating potential risks. More importantly, due to its generative nature, the model is trained to learn the underlying data distribution, not the specific input-output map, which enables it to impute all missing data simultaneously. Through experiments on a real-world data set, we demonstrate that our proposed method surpasses conventional data-driven techniques in performance. Both qualitative and quantitative evaluations confirm the effectiveness of the model in imputing missing components. This research highlights the potential of modern deep generative models in petroleum engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助小飞鼠采纳,获得10
1秒前
满意的破茧完成签到,获得积分20
1秒前
小衰帅完成签到,获得积分10
2秒前
lyayaru完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
kyyy发布了新的文献求助10
5秒前
5秒前
所所应助爱听歌蜗牛采纳,获得10
5秒前
mzh完成签到,获得积分10
6秒前
8秒前
9秒前
奋进号发布了新的文献求助10
9秒前
10秒前
szy发布了新的文献求助10
11秒前
乐乐应助lyayaru采纳,获得10
11秒前
11秒前
cy完成签到 ,获得积分10
12秒前
linyalala发布了新的文献求助10
12秒前
SYLH应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
小飞鼠发布了新的文献求助10
14秒前
不懈奋进应助科研通管家采纳,获得30
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
科研通AI5应助yy采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
迟大猫应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
wangjun应助lzx采纳,获得10
14秒前
14秒前
15秒前
庆次完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538747
求助须知:如何正确求助?哪些是违规求助? 3116472
关于积分的说明 9325379
捐赠科研通 2814343
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720644
科研通“疑难数据库(出版商)”最低求助积分说明 712109