Diagnosing and tracking depression based on eye movement in response to virtual reality

人工智能 支持向量机 召回 随机森林 眼球运动 多层感知器 F1得分 萧条(经济学) 计算机科学 机器学习 医学 心理学 人工神经网络 认知心理学 经济 宏观经济学
作者
Zhiguo Zheng,Lijuan Liang,Xiong‐Jian Luo,Jie Chen,Meirong Lin,Guanjun Wang,Jing Wang
出处
期刊:Frontiers in Psychiatry [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fpsyt.2024.1280935
摘要

Introduction Depression is a prevalent mental illness that is primarily diagnosed using psychological and behavioral assessments. However, these assessments lack objective and quantitative indices, making rapid and objective detection challenging. In this study, we propose a novel method for depression detection based on eye movement data captured in response to virtual reality (VR). Methods Eye movement data was collected and used to establish high-performance classification and prediction models. Four machine learning algorithms, namely eXtreme Gradient Boosting (XGBoost), multilayer perceptron (MLP), Support Vector Machine (SVM), and Random Forest, were employed. The models were evaluated using five-fold cross-validation, and performance metrics including accuracy, precision, recall, area under the curve (AUC), and F1-score were assessed. The predicted error for the Patient Health Questionnaire-9 (PHQ-9) score was also determined. Results The XGBoost model achieved a mean accuracy of 76%, precision of 94%, recall of 73%, and AUC of 82%, with an F1-score of 78%. The MLP model achieved a classification accuracy of 86%, precision of 96%, recall of 91%, and AUC of 86%, with an F1-score of 92%. The predicted error for the PHQ-9 score ranged from -0.6 to 0.6.To investigate the role of computerized cognitive behavioral therapy (CCBT) in treating depression, participants were divided into intervention and control groups. The intervention group received CCBT, while the control group received no treatment. After five CCBT sessions, significant changes were observed in the eye movement indices of fixation and saccade, as well as in the PHQ-9 scores. These two indices played significant roles in the predictive model, indicating their potential as biomarkers for detecting depression symptoms. Discussion The results suggest that eye movement indices obtained using a VR eye tracker can serve as useful biomarkers for detecting depression symptoms. Specifically, the fixation and saccade indices showed promise in predicting depression. Furthermore, CCBT demonstrated effectiveness in treating depression, as evidenced by the observed changes in eye movement indices and PHQ-9 scores. In conclusion, this study presents a novel approach for depression detection using eye movement data captured in VR. The findings highlight the potential of eye movement indices as biomarkers and underscore the effectiveness of CCBT in treating depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
科研通AI2S应助王肖采纳,获得10
1秒前
2秒前
老实的如波完成签到,获得积分10
3秒前
我叫胖子发布了新的文献求助10
3秒前
6秒前
6秒前
无花果应助fls221采纳,获得10
6秒前
畅快访蕊发布了新的文献求助10
6秒前
在水一方应助瑞仔采纳,获得10
7秒前
英俊的铭应助优秀老师采纳,获得10
7秒前
7秒前
爱吃香菜发布了新的文献求助30
8秒前
lll完成签到,获得积分10
9秒前
9秒前
XC发布了新的文献求助10
10秒前
Flora发布了新的文献求助10
10秒前
崔崔完成签到,获得积分10
10秒前
11秒前
二十六画生完成签到,获得积分10
12秒前
兴奋芷完成签到,获得积分10
12秒前
12秒前
田様应助闵斯采纳,获得10
14秒前
14秒前
rain完成签到,获得积分10
15秒前
15秒前
orixero应助linda采纳,获得10
15秒前
15秒前
HUAhua花完成签到,获得积分10
15秒前
16秒前
llhhh发布了新的文献求助10
16秒前
个性的紫菜应助jessie采纳,获得10
16秒前
祺志鲜明完成签到,获得积分10
17秒前
rain发布了新的文献求助10
17秒前
冰糖小葫芦完成签到,获得积分20
18秒前
前隆是狗发布了新的文献求助10
18秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160338
求助须知:如何正确求助?哪些是违规求助? 2811485
关于积分的说明 7892612
捐赠科研通 2470499
什么是DOI,文献DOI怎么找? 1315589
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038