亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smoke-Aware Global-Interactive Non-Local Network for Smoke Semantic Segmentation

计算机科学 分割 稳健性(进化) 人工智能 语义学(计算机科学) 可扩展性 模式识别(心理学) 生物化学 化学 数据库 基因 程序设计语言
作者
Lin Zhang,Jing Wu,Feiniu Yuan,Yuming Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1175-1187 被引量:2
标识
DOI:10.1109/tip.2024.3359816
摘要

Compared with other objects, smoke semantic segmentation (SSS) is more difficult and challenging due to some special characteristics of smoke, such as non-rigid, translucency, variable mode and so on. To achieve accurate positioning of smoke in real complex scenes and promote the development of intelligent fire detection, we propose a Smoke-Aware Global-Interactive Non-local Network (SAGINN) for SSS, which harness the power of both convolution and transformer to capture local and global information simultaneously. Non-local is a powerful means for modeling long-range context dependencies, however, friendliness to single-scale low-resolution features limits its potential to produce high-quality representations. Therefore, we propose a Global-Interactive Non-local (GINL) module, leveraging global interaction between multi-scale key information to improve the robustness of feature representations. To solve the interference of smoke-like objects, a Pyramid High-level Semantic Aggregation (PHSA) module is designed, where the learned high-level category semantics from classification aids model by providing additional guidance to correct the wrong information in segmentation representations at the image level and alleviate the inter-class similarity problem. Besides, we further propose a novel loss function, termed Smoke-aware loss (SAL), by assigning different weights to different objects contingent on their importance. We evaluate our SAGINN on extensive synthetic and real data to verify its generalization ability. Experimental results show that SAGINN achieves 83% average mIoU on the three testing datasets (83.33%, 82.72% and 82.94%) of SYN70K with an accuracy improvement of about 0.5%, 0.002 mMse and 0.805 F β on SMOKE5K, which can obtain more accurate location and finer boundaries of smoke, achieving satisfactory results on smoke-like objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HuiHui完成签到,获得积分10
19秒前
30秒前
今后应助zhengzhster采纳,获得10
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
1分钟前
ling361完成签到,获得积分10
1分钟前
假装学霸完成签到 ,获得积分10
1分钟前
2分钟前
zhengzhster发布了新的文献求助10
2分钟前
zyjsunye完成签到 ,获得积分0
2分钟前
CC完成签到,获得积分10
2分钟前
斯文败类应助鱼块采纳,获得10
2分钟前
2分钟前
谦让的西装完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
CC发布了新的文献求助10
3分钟前
3分钟前
夜雨完成签到,获得积分10
3分钟前
9527完成签到,获得积分10
4分钟前
4分钟前
时尚老太发布了新的文献求助10
5分钟前
domkps完成签到 ,获得积分10
5分钟前
传奇3应助Yportne采纳,获得10
5分钟前
5分钟前
6分钟前
Xiaoping完成签到 ,获得积分10
6分钟前
Yportne发布了新的文献求助10
6分钟前
jfc完成签到 ,获得积分10
6分钟前
6分钟前
慕青应助Yportne采纳,获得10
6分钟前
Yportne完成签到,获得积分10
7分钟前
7分钟前
藤椒辣鱼应助科研通管家采纳,获得10
7分钟前
奋斗的雅柔完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
9分钟前
藤椒辣鱼应助科研通管家采纳,获得10
9分钟前
9分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440095
求助须知:如何正确求助?哪些是违规求助? 3036519
关于积分的说明 8964013
捐赠科研通 2724713
什么是DOI,文献DOI怎么找? 1494781
科研通“疑难数据库(出版商)”最低求助积分说明 690940
邀请新用户注册赠送积分活动 687419