Smoke-Aware Global-Interactive Non-Local Network for Smoke Semantic Segmentation

计算机科学 分割 稳健性(进化) 人工智能 语义学(计算机科学) 可扩展性 模式识别(心理学) 生物化学 数据库 基因 化学 程序设计语言
作者
Lin Zhang,Jing Wu,Feiniu Yuan,Yuming Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1175-1187 被引量:2
标识
DOI:10.1109/tip.2024.3359816
摘要

Compared with other objects, smoke semantic segmentation (SSS) is more difficult and challenging due to some special characteristics of smoke, such as non-rigid, translucency, variable mode and so on. To achieve accurate positioning of smoke in real complex scenes and promote the development of intelligent fire detection, we propose a Smoke-Aware Global-Interactive Non-local Network (SAGINN) for SSS, which harness the power of both convolution and transformer to capture local and global information simultaneously. Non-local is a powerful means for modeling long-range context dependencies, however, friendliness to single-scale low-resolution features limits its potential to produce high-quality representations. Therefore, we propose a Global-Interactive Non-local (GINL) module, leveraging global interaction between multi-scale key information to improve the robustness of feature representations. To solve the interference of smoke-like objects, a Pyramid High-level Semantic Aggregation (PHSA) module is designed, where the learned high-level category semantics from classification aids model by providing additional guidance to correct the wrong information in segmentation representations at the image level and alleviate the inter-class similarity problem. Besides, we further propose a novel loss function, termed Smoke-aware loss (SAL), by assigning different weights to different objects contingent on their importance. We evaluate our SAGINN on extensive synthetic and real data to verify its generalization ability. Experimental results show that SAGINN achieves 83% average mIoU on the three testing datasets (83.33%, 82.72% and 82.94%) of SYN70K with an accuracy improvement of about 0.5%, 0.002 mMse and 0.805 F β on SMOKE5K, which can obtain more accurate location and finer boundaries of smoke, achieving satisfactory results on smoke-like objects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清水小镇完成签到,获得积分10
1秒前
Miya完成签到,获得积分10
1秒前
1秒前
time完成签到,获得积分10
1秒前
精明的冰香完成签到,获得积分10
1秒前
宝宝巴士完成签到 ,获得积分10
1秒前
简单的卿完成签到,获得积分10
2秒前
丘比特应助幽你一默采纳,获得10
2秒前
自信向梦完成签到,获得积分10
2秒前
2秒前
2秒前
乔乔乔发布了新的文献求助10
3秒前
PURPLE完成签到 ,获得积分10
3秒前
burn完成签到,获得积分10
3秒前
天天喝咖啡完成签到,获得积分10
4秒前
彼方250521完成签到,获得积分10
4秒前
4秒前
是小刘同学呀完成签到,获得积分10
4秒前
SciGPT应助HLL采纳,获得10
4秒前
三脸茫然完成签到 ,获得积分0
4秒前
ttl完成签到,获得积分10
4秒前
4秒前
小鱼完成签到,获得积分10
5秒前
5秒前
宫冷雁完成签到 ,获得积分10
6秒前
帅气男孩完成签到,获得积分10
6秒前
7秒前
随意一点完成签到,获得积分10
7秒前
科研通AI6应助mmichaell采纳,获得10
7秒前
zer0完成签到,获得积分10
8秒前
pets完成签到,获得积分10
8秒前
kaige66发布了新的文献求助10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
烂漫的灰狼完成签到,获得积分10
9秒前
9秒前
刘传宏完成签到,获得积分10
9秒前
LL完成签到,获得积分10
9秒前
科研通AI6应助τ涛采纳,获得30
9秒前
温大林完成签到,获得积分10
10秒前
scholars完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651723
求助须知:如何正确求助?哪些是违规求助? 4785782
关于积分的说明 15055712
捐赠科研通 4810402
什么是DOI,文献DOI怎么找? 2573132
邀请新用户注册赠送积分活动 1529020
关于科研通互助平台的介绍 1488014