Smoke-Aware Global-Interactive Non-Local Network for Smoke Semantic Segmentation

计算机科学 分割 稳健性(进化) 人工智能 语义学(计算机科学) 可扩展性 模式识别(心理学) 生物化学 化学 数据库 基因 程序设计语言
作者
Lin Zhang,Jing Wu,Feiniu Yuan,Yuming Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1175-1187 被引量:2
标识
DOI:10.1109/tip.2024.3359816
摘要

Compared with other objects, smoke semantic segmentation (SSS) is more difficult and challenging due to some special characteristics of smoke, such as non-rigid, translucency, variable mode and so on. To achieve accurate positioning of smoke in real complex scenes and promote the development of intelligent fire detection, we propose a Smoke-Aware Global-Interactive Non-local Network (SAGINN) for SSS, which harness the power of both convolution and transformer to capture local and global information simultaneously. Non-local is a powerful means for modeling long-range context dependencies, however, friendliness to single-scale low-resolution features limits its potential to produce high-quality representations. Therefore, we propose a Global-Interactive Non-local (GINL) module, leveraging global interaction between multi-scale key information to improve the robustness of feature representations. To solve the interference of smoke-like objects, a Pyramid High-level Semantic Aggregation (PHSA) module is designed, where the learned high-level category semantics from classification aids model by providing additional guidance to correct the wrong information in segmentation representations at the image level and alleviate the inter-class similarity problem. Besides, we further propose a novel loss function, termed Smoke-aware loss (SAL), by assigning different weights to different objects contingent on their importance. We evaluate our SAGINN on extensive synthetic and real data to verify its generalization ability. Experimental results show that SAGINN achieves 83% average mIoU on the three testing datasets (83.33%, 82.72% and 82.94%) of SYN70K with an accuracy improvement of about 0.5%, 0.002 mMse and 0.805 F β on SMOKE5K, which can obtain more accurate location and finer boundaries of smoke, achieving satisfactory results on smoke-like objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Akim应助科研通管家采纳,获得20
5秒前
only完成签到 ,获得积分10
7秒前
玺青一生完成签到 ,获得积分10
11秒前
11秒前
11秒前
桐桐应助liaomr采纳,获得10
12秒前
xy完成签到 ,获得积分10
12秒前
优雅莞完成签到,获得积分10
15秒前
iNk应助fireking_sid采纳,获得50
15秒前
小乙猪完成签到 ,获得积分0
17秒前
18秒前
19秒前
21秒前
Hmc完成签到 ,获得积分10
21秒前
那种完成签到,获得积分10
23秒前
24秒前
AKi233发布了新的文献求助10
25秒前
27秒前
crystal完成签到 ,获得积分10
35秒前
AKi233完成签到,获得积分10
42秒前
guishouyu完成签到 ,获得积分10
44秒前
欧阳发布了新的文献求助10
44秒前
ramsey33完成签到 ,获得积分10
44秒前
dream完成签到 ,获得积分10
47秒前
52秒前
zhangpeipei完成签到,获得积分10
53秒前
欧阳完成签到,获得积分10
53秒前
股价发布了新的文献求助10
56秒前
玩命做研究完成签到 ,获得积分10
1分钟前
1分钟前
路漫漫其修远兮完成签到 ,获得积分10
1分钟前
1分钟前
123456完成签到,获得积分10
1分钟前
123456发布了新的文献求助10
1分钟前
清脆愫完成签到 ,获得积分10
1分钟前
1分钟前
Onetwothree完成签到 ,获得积分10
1分钟前
左丘映易完成签到,获得积分0
1分钟前
XU博士完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245466
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247