Smoke-Aware Global-Interactive Non-Local Network for Smoke Semantic Segmentation

计算机科学 分割 稳健性(进化) 人工智能 语义学(计算机科学) 可扩展性 模式识别(心理学) 生物化学 数据库 基因 化学 程序设计语言
作者
Lin Zhang,Jing Wu,Feiniu Yuan,Yuming Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1175-1187 被引量:2
标识
DOI:10.1109/tip.2024.3359816
摘要

Compared with other objects, smoke semantic segmentation (SSS) is more difficult and challenging due to some special characteristics of smoke, such as non-rigid, translucency, variable mode and so on. To achieve accurate positioning of smoke in real complex scenes and promote the development of intelligent fire detection, we propose a Smoke-Aware Global-Interactive Non-local Network (SAGINN) for SSS, which harness the power of both convolution and transformer to capture local and global information simultaneously. Non-local is a powerful means for modeling long-range context dependencies, however, friendliness to single-scale low-resolution features limits its potential to produce high-quality representations. Therefore, we propose a Global-Interactive Non-local (GINL) module, leveraging global interaction between multi-scale key information to improve the robustness of feature representations. To solve the interference of smoke-like objects, a Pyramid High-level Semantic Aggregation (PHSA) module is designed, where the learned high-level category semantics from classification aids model by providing additional guidance to correct the wrong information in segmentation representations at the image level and alleviate the inter-class similarity problem. Besides, we further propose a novel loss function, termed Smoke-aware loss (SAL), by assigning different weights to different objects contingent on their importance. We evaluate our SAGINN on extensive synthetic and real data to verify its generalization ability. Experimental results show that SAGINN achieves 83% average mIoU on the three testing datasets (83.33%, 82.72% and 82.94%) of SYN70K with an accuracy improvement of about 0.5%, 0.002 mMse and 0.805 F β on SMOKE5K, which can obtain more accurate location and finer boundaries of smoke, achieving satisfactory results on smoke-like objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的盼秋完成签到,获得积分10
1秒前
1秒前
YeMa发布了新的文献求助10
1秒前
1秒前
2秒前
123完成签到 ,获得积分10
2秒前
LOVE0077完成签到,获得积分10
2秒前
英姑应助cannice采纳,获得10
3秒前
充电宝应助zhs采纳,获得10
3秒前
王博龙完成签到 ,获得积分10
3秒前
3秒前
之贻发布了新的文献求助10
4秒前
www完成签到,获得积分20
4秒前
HJQ发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
研友_Z6k5Q8发布了新的文献求助10
6秒前
6秒前
www发布了新的文献求助10
7秒前
7秒前
hanyangyang完成签到,获得积分10
7秒前
吃定彩虹关注了科研通微信公众号
7秒前
科目三应助乐乐采纳,获得10
8秒前
coco234完成签到,获得积分10
9秒前
NineLiar完成签到,获得积分10
9秒前
ZS发布了新的文献求助10
9秒前
Zorion发布了新的文献求助10
9秒前
乐观依云发布了新的文献求助10
9秒前
wise111发布了新的文献求助10
10秒前
10秒前
LJ发布了新的文献求助10
10秒前
11秒前
12秒前
菠萝吹雪发布了新的文献求助10
12秒前
ljact完成签到,获得积分10
13秒前
13秒前
ding应助优秀问丝采纳,获得10
13秒前
心驰天外完成签到,获得积分10
14秒前
牵猫散步的鱼完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769