Smoke-Aware Global-Interactive Non-Local Network for Smoke Semantic Segmentation

计算机科学 分割 稳健性(进化) 人工智能 语义学(计算机科学) 可扩展性 模式识别(心理学) 生物化学 化学 数据库 基因 程序设计语言
作者
Lin Zhang,Jing Wu,Feiniu Yuan,Yuming Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1175-1187 被引量:2
标识
DOI:10.1109/tip.2024.3359816
摘要

Compared with other objects, smoke semantic segmentation (SSS) is more difficult and challenging due to some special characteristics of smoke, such as non-rigid, translucency, variable mode and so on. To achieve accurate positioning of smoke in real complex scenes and promote the development of intelligent fire detection, we propose a Smoke-Aware Global-Interactive Non-local Network (SAGINN) for SSS, which harness the power of both convolution and transformer to capture local and global information simultaneously. Non-local is a powerful means for modeling long-range context dependencies, however, friendliness to single-scale low-resolution features limits its potential to produce high-quality representations. Therefore, we propose a Global-Interactive Non-local (GINL) module, leveraging global interaction between multi-scale key information to improve the robustness of feature representations. To solve the interference of smoke-like objects, a Pyramid High-level Semantic Aggregation (PHSA) module is designed, where the learned high-level category semantics from classification aids model by providing additional guidance to correct the wrong information in segmentation representations at the image level and alleviate the inter-class similarity problem. Besides, we further propose a novel loss function, termed Smoke-aware loss (SAL), by assigning different weights to different objects contingent on their importance. We evaluate our SAGINN on extensive synthetic and real data to verify its generalization ability. Experimental results show that SAGINN achieves 83% average mIoU on the three testing datasets (83.33%, 82.72% and 82.94%) of SYN70K with an accuracy improvement of about 0.5%, 0.002 mMse and 0.805 F β on SMOKE5K, which can obtain more accurate location and finer boundaries of smoke, achieving satisfactory results on smoke-like objects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初一发布了新的文献求助10
1秒前
CipherSage应助tony采纳,获得10
1秒前
科研通AI2S应助NichZhang采纳,获得10
1秒前
1秒前
1秒前
Lll完成签到,获得积分10
1秒前
jin发布了新的文献求助10
2秒前
顺利秋灵完成签到,获得积分20
2秒前
上官若男应助楚子关采纳,获得10
2秒前
科研通AI6应助jgyyugyfy采纳,获得10
3秒前
able完成签到 ,获得积分0
3秒前
PEGA发布了新的文献求助10
3秒前
3秒前
4秒前
单纯的又菱完成签到,获得积分10
4秒前
淡然从雪发布了新的文献求助10
4秒前
可靠诗筠完成签到 ,获得积分10
4秒前
wei998完成签到,获得积分20
5秒前
精明的书白完成签到,获得积分10
6秒前
yueliang发布了新的文献求助10
6秒前
Michael完成签到 ,获得积分10
6秒前
6秒前
西风月发布了新的文献求助10
6秒前
摩洛哥野山羊完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
阿飞大师发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
黄yellow完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Eason完成签到,获得积分10
11秒前
11秒前
CYT完成签到,获得积分10
12秒前
12秒前
笨笨的白桃完成签到,获得积分20
13秒前
13秒前
玉襄完成签到,获得积分20
13秒前
沉默的驳完成签到,获得积分10
14秒前
zzz发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734192
求助须知:如何正确求助?哪些是违规求助? 5352723
关于积分的说明 15326264
捐赠科研通 4878992
什么是DOI,文献DOI怎么找? 2621558
邀请新用户注册赠送积分活动 1570684
关于科研通互助平台的介绍 1527613