亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smoke-Aware Global-Interactive Non-Local Network for Smoke Semantic Segmentation

计算机科学 分割 稳健性(进化) 人工智能 语义学(计算机科学) 可扩展性 模式识别(心理学) 生物化学 数据库 基因 化学 程序设计语言
作者
Lin Zhang,Jing Wu,Feiniu Yuan,Yuming Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1175-1187 被引量:2
标识
DOI:10.1109/tip.2024.3359816
摘要

Compared with other objects, smoke semantic segmentation (SSS) is more difficult and challenging due to some special characteristics of smoke, such as non-rigid, translucency, variable mode and so on. To achieve accurate positioning of smoke in real complex scenes and promote the development of intelligent fire detection, we propose a Smoke-Aware Global-Interactive Non-local Network (SAGINN) for SSS, which harness the power of both convolution and transformer to capture local and global information simultaneously. Non-local is a powerful means for modeling long-range context dependencies, however, friendliness to single-scale low-resolution features limits its potential to produce high-quality representations. Therefore, we propose a Global-Interactive Non-local (GINL) module, leveraging global interaction between multi-scale key information to improve the robustness of feature representations. To solve the interference of smoke-like objects, a Pyramid High-level Semantic Aggregation (PHSA) module is designed, where the learned high-level category semantics from classification aids model by providing additional guidance to correct the wrong information in segmentation representations at the image level and alleviate the inter-class similarity problem. Besides, we further propose a novel loss function, termed Smoke-aware loss (SAL), by assigning different weights to different objects contingent on their importance. We evaluate our SAGINN on extensive synthetic and real data to verify its generalization ability. Experimental results show that SAGINN achieves 83% average mIoU on the three testing datasets (83.33%, 82.72% and 82.94%) of SYN70K with an accuracy improvement of about 0.5%, 0.002 mMse and 0.805 F β on SMOKE5K, which can obtain more accurate location and finer boundaries of smoke, achieving satisfactory results on smoke-like objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小烦完成签到 ,获得积分10
4秒前
numagok完成签到,获得积分10
7秒前
满怀信心完成签到 ,获得积分10
8秒前
Lucas应助撸撸大仙采纳,获得10
10秒前
晓晓完成签到,获得积分20
15秒前
微笑的桐完成签到 ,获得积分20
19秒前
CYY完成签到 ,获得积分10
24秒前
24秒前
Yuki完成签到 ,获得积分10
28秒前
秋日思语发布了新的文献求助30
29秒前
vagary发布了新的文献求助10
32秒前
35秒前
Orange应助Runjin_Hu采纳,获得10
35秒前
38秒前
vagary完成签到,获得积分10
43秒前
唐ZY123发布了新的文献求助10
45秒前
科研通AI5应助JL采纳,获得10
49秒前
大气的枫发布了新的文献求助10
52秒前
和谐青文完成签到 ,获得积分10
58秒前
59秒前
巫马百招完成签到,获得积分10
1分钟前
SciGPT应助大气的枫采纳,获得10
1分钟前
鸣笛应助大气的枫采纳,获得10
1分钟前
Wang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
KIKI完成签到 ,获得积分10
1分钟前
DoctorLee发布了新的文献求助10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
李金文应助科研通管家采纳,获得10
1分钟前
李金文应助科研通管家采纳,获得10
1分钟前
JL发布了新的文献求助10
1分钟前
灵儿完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
DoctorLee完成签到,获得积分10
1分钟前
sfwrbh发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610559
求助须知:如何正确求助?哪些是违规求助? 4016467
关于积分的说明 12435266
捐赠科研通 3698082
什么是DOI,文献DOI怎么找? 2039210
邀请新用户注册赠送积分活动 1072079
科研通“疑难数据库(出版商)”最低求助积分说明 955767