过电位
金属间化合物
催化作用
材料科学
密度泛函理论
拉伤
化学
电化学
化学工程
冶金
物理化学
计算化学
电极
有机化学
合金
医学
内科学
工程类
作者
Ziying Zhong,Yuanhua Tu,Longhai Zhang,Jun Ke,Chengzhi Zhong,Weiquan Tan,Liming Wang,Jiaxi Zhang,Huiyu Song,Li Du,Zhiming Cui
标识
DOI:10.1021/acscatal.3c06291
摘要
Elucidating the relationship between electrocatalytic activity and surface strain is pivotal for designing highly efficient electrocatalysts for the acidic hydrogen evolution reaction (HER). However, a general correlation is currently absent due to the lack of ideal catalytic materials platforms with well-defined structures and components. Herein, we select L10 and L12 Pt-based intermetallic compounds as model materials to construct a series of core–shell catalysts with strained Pt skins (IMC@Pt) and establish the correlation between surface strain and HER performance. Density functional theory calculations were performed to determine the surface strain degree, d-band center, and key descriptor ΔGH* of the catalysts for HER. By combining theoretical and experimental data, we propose a volcano-type trend between surface strain and the HER activity of IMC@Pt with an apex at 4% compressive strain. In addition, we demonstrate a class of highly active and durable IMC@Pt catalysts for acidic HER. Among them, the Pt3V@Pt catalyst exhibits the highest intrinsic HER activity with a specific activity of 4.24 mA cmPt–2 at an overpotential of 20 mV, which is 4 times higher than that of Pt. This work provides a solid understanding of the essential nature of PtM alloy catalysts and can guide the design of high-performance HER catalysts for water electrolyzers.
科研通智能强力驱动
Strongly Powered by AbleSci AI