CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability

变压器 概率逻辑 需求预测 计算机科学 数据挖掘 分位数 时间序列 概率预测 分位数回归 人工智能 机器学习 工程类 运筹学 电气工程 计量经济学 数学 电压
作者
Zhirui Tian,Weican Liu,Wenqian Jiang,Chenye Wu
出处
期刊:Energy [Elsevier]
卷期号:293: 130666-130666 被引量:37
标识
DOI:10.1016/j.energy.2024.130666
摘要

Independent system operators (ISOs) are pursuing day-ahead probabilistic load forecasting as it offers comprehensive load trend and pattern information. Compared with commonly adopted point forecasting, it enables ISOs to better understand the uncertainty of future demand through interval forecasting with varying confidence levels. In practice, this advantage could enable precise day-ahead forecasting for critical days with irregular load patterns (e.g., weekends or holidays), particularly when the data availability is limited. To this end, we customize a day-ahead probabilistic load forecasting framework with an emphasis on weekends based on data processing and probabilistic deep learning. Specifically, data processing combines data denoising and data augmentation techniques, incorporating peak and trend information into the denoised one-dimensional time series data to aid training. This procedure helps extract more information from the restricted training samples. The probabilistic deep learning, CNNs-Transformer, combines multi-layer Convolutional Neural Networks and Transformer, adopting QRLoss (quantile regression loss function) to achieve probabilistic forecasting. The loss penalty technique enhances the model's attention to weekend data. Numerical studies based on field data suggest that the proposed framework can obtain accurate day-ahead probabilistic forecasting results (48-time points of the whole day) by using only two-week historical data, and the accuracy improvement over its rivals is remarkable on weekends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助杨辅政采纳,获得10
刚刚
233发布了新的文献求助10
1秒前
1秒前
潇涯发布了新的文献求助30
2秒前
CNAxiaozhu7应助linlin采纳,获得10
2秒前
3秒前
3秒前
4秒前
达雨应助SiqiZhang采纳,获得10
4秒前
6秒前
OneHundred发布了新的文献求助10
6秒前
嘉嘉sone发布了新的文献求助10
7秒前
深情安青应助小鲨鱼采纳,获得10
7秒前
文艺紫菜发布了新的文献求助10
8秒前
大个应助重要的汽车采纳,获得30
8秒前
深情安青应助唐白云采纳,获得10
8秒前
科研通AI6应助慈祥的鑫采纳,获得10
8秒前
zej完成签到,获得积分10
10秒前
10秒前
潇涯完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
Anna完成签到,获得积分10
14秒前
14秒前
小新给小新的求助进行了留言
14秒前
Wawoo发布了新的文献求助10
14秒前
15秒前
斯文败类应助勤奋的绝义采纳,获得10
15秒前
lorentzh发布了新的文献求助10
16秒前
茜茜公主发布了新的文献求助10
17秒前
杨辅政完成签到,获得积分20
17秒前
小二郎应助坚强南烟采纳,获得10
18秒前
852应助奋斗的孤兰采纳,获得10
18秒前
18秒前
sevenhill应助认真的蜜粉采纳,获得20
20秒前
lcy发布了新的文献求助10
20秒前
20秒前
杨辅政发布了新的文献求助10
21秒前
打打应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557221
求助须知:如何正确求助?哪些是违规求助? 4642435
关于积分的说明 14667964
捐赠科研通 4583782
什么是DOI,文献DOI怎么找? 2514417
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459402