Advanced integration of ensemble learning and MT-InSAR for enhanced slow-moving landslide susceptibility zoning

分区 山崩 干涉合成孔径雷达 地质学 地形 地震学 遥感 地理 地图学 工程类 土木工程 合成孔径雷达
作者
Taorui Zeng,Liyang Wu,Yuichi S. Hayakawa,Kunlong Yin,Taorui Zeng,Bijing Jin,Zizheng Guo,Dario Peduto
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:331: 107436-107436 被引量:15
标识
DOI:10.1016/j.enggeo.2024.107436
摘要

The Three Gorges Dam's operation has been recognized as a contributing factor to slope instability and the reactivation of pre-existing deep-seated landslides in the region. Regular human activities, including the regulation of the Yangtze River water level, urban development, and infrastructure expansion, combined with heavy rainfall, dynamically alter the state of existing slow-moving landslides and can provoke new slope failures. This study introduces a comprehensive approach aimed at assessing the susceptibility associated with potential reactivations or accelerations of pre-existing deep-seated landslides in Dazhou town, located in Wanzhou District's northern area. The approach encompasses a synthesis of ensemble learning models and non-invasive remote sensing (i.e. multi-temporal interferometric SAR, MT-InSAR) displacement monitoring to ascertain regions prone to slow-moving landslides. The addressed key challenges include: (i) the integration of three distinct ensemble algorithms—boosting, bagging, and stacking—to enhance the predictive precision of the first-level landslide susceptibility zonation and (ii) MT-InSAR data analysis, which allows the generation of kinematic indicators used to derive a second-level enhanced susceptibility zonation. The investigation primarily focuses on slope units, deemed critical for susceptibility zoning. The derived insights are then cross-checked with in-situ landslide data, consolidating the empirical findings. This integrated knowledge is crucial for the development of effective risk mitigation strategies and the advancement of landslide risk management for future scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘凯旋发布了新的文献求助10
1秒前
丫丫发布了新的文献求助10
1秒前
Zzz完成签到,获得积分10
1秒前
1秒前
爱听歌的老九完成签到,获得积分10
1秒前
汉堡包应助Cbbaby采纳,获得10
4秒前
5秒前
5秒前
我的文献呢应助徐赞美采纳,获得10
6秒前
阳光衣发布了新的文献求助10
6秒前
沧笙踏歌应助Zzz采纳,获得10
7秒前
今后应助Zzz采纳,获得10
7秒前
时尚的世立完成签到,获得积分10
7秒前
丘比特应助洁净的钢笔采纳,获得10
7秒前
Chelry发布了新的文献求助10
8秒前
phoebe发布了新的文献求助10
9秒前
xy完成签到,获得积分10
10秒前
YJL发布了新的文献求助20
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Nikola完成签到 ,获得积分10
12秒前
科研通AI2S应助阿敬采纳,获得10
14秒前
刘凯旋完成签到,获得积分10
15秒前
Akane发布了新的文献求助10
17秒前
18秒前
Yeiiiiii完成签到,获得积分10
18秒前
阳光衣完成签到,获得积分10
19秒前
19秒前
me发布了新的文献求助10
21秒前
Syk_完成签到,获得积分10
22秒前
默默安双发布了新的文献求助10
23秒前
25秒前
27秒前
千跃应助韩jl采纳,获得20
28秒前
酷波er应助jj采纳,获得10
28秒前
眯眯眼的衬衫应助阿敬采纳,获得10
29秒前
29秒前
英俊的铭应助Gulu_采纳,获得10
30秒前
孙曜儿给孙曜儿的求助进行了留言
30秒前
烟花应助ahxb采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565