ZeekFlow: Deep Learning-Based Network Intrusion Detection a Multimodal Approach

计算机科学 入侵检测系统 人工智能 深度学习
作者
Dimitrios Giagkos,Orestis Kompougias,Αντώνιος Λίτκε,Nikolaos Papadakis
出处
期刊:Lecture Notes in Computer Science 卷期号:: 409-425
标识
DOI:10.1007/978-3-031-54129-2_24
摘要

The ever-increasing network traffic generated by numerous interconnected devices inside the modern digital world paves the way for a plethora of attack surfaces that could be exploited by attackers at any time, with various means and manifold objectives. While multiple challenges have been addressed, malicious actors constantly raise the bar of deploying inventive attacks and therefore, novel solutions are required to mitigate the problem. Conventional defensive practices are unable to provide security guarantees in many scenarios, especially against zero-day threats. To this end, we present ZeekFlow, a DL-based module for Network Intrusion Detection (NID), that encapsulates a novel, dual-modality architecture for processing network traffic and inferring complex correlations that would lead to accurate threat detection and mitigation. Experimental results show a significant performance boost up to 45% by combining the two modalities. The proposed technique has been rigorously evaluated with three public benchmark datasets (i.e., CIC-IDS2017, CIRA-CIC-DoHBrw-2020 and USTC-TFC2016) that cover a broad range of cyberattacks. Further, the anomaly detection performance of our solution is compared to three closely-related research works, which are outperformed in the vast majority of metrics (e.g., AUC, Recall, etc).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onemore关注了科研通微信公众号
1秒前
1秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得200
2秒前
SYLH应助科研通管家采纳,获得30
2秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得30
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
瘦瘦依白应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得30
4秒前
坦率的匪应助科研通管家采纳,获得20
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
执念完成签到,获得积分10
4秒前
4秒前
yar应助科研通管家采纳,获得10
4秒前
李爱国应助Gheros采纳,获得10
5秒前
在水一方应助1234采纳,获得10
5秒前
背后的桐发布了新的文献求助10
5秒前
在水一方应助Sylvia0528采纳,获得10
5秒前
完美世界应助舒适的店员采纳,获得10
5秒前
6秒前
Zever完成签到,获得积分10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635