Evaluation of ChatGPT-generated medical responses: A systematic review and meta-analysis

计算机科学 数据科学
作者
Qiuhong Wei,Zhengxiong Yao,Ying Cui,Bo Wei,Zhezhen Jin,Ximing Xu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:151: 104620-104620 被引量:9
标识
DOI:10.1016/j.jbi.2024.104620
摘要

Large language models (LLMs) such as ChatGPT are increasingly explored in medical domains. However, the absence of standard guidelines for performance evaluation has led to methodological inconsistencies. This study aims to summarize the available evidence on evaluating ChatGPT's performance in answering medical questions and provide direction for future research. An extensive literature search was conducted on June 15, 2023, across ten medical databases. The keyword used was "ChatGPT," without restrictions on publication type, language, or date. Studies evaluating ChatGPT's performance in answering medical questions were included. Exclusions comprised review articles, comments, patents, non-medical evaluations of ChatGPT, and preprint studies. Data was extracted on general study characteristics, question sources, conversation processes, assessment metrics, and performance of ChatGPT. An evaluation framework for LLM in medical inquiries was proposed by integrating insights from selected literature. This study is registered with PROSPERO, CRD42023456327. A total of 3520 articles were identified, of which 60 were reviewed and summarized in this paper and 17 were included in the meta-analysis. ChatGPT displayed an overall integrated accuracy of 56 % (95 % CI: 51 %–60 %, I2 = 87 %) in addressing medical queries. However, the studies varied in question resource, question-asking process, and evaluation metrics. As per our proposed evaluation framework, many studies failed to report methodological details, such as the date of inquiry, version of ChatGPT, and inter-rater consistency. This review reveals ChatGPT's potential in addressing medical inquiries, but the heterogeneity of the study design and insufficient reporting might affect the results' reliability. Our proposed evaluation framework provides insights for the future study design and transparent reporting of LLM in responding to medical questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊延恶完成签到,获得积分10
刚刚
HXie给HXie的求助进行了留言
1秒前
orange发布了新的文献求助10
2秒前
33完成签到 ,获得积分10
3秒前
今天很美味完成签到 ,获得积分10
4秒前
5秒前
紫愿完成签到 ,获得积分10
5秒前
科研白菜白完成签到,获得积分10
7秒前
明理小凝完成签到 ,获得积分10
7秒前
北斋完成签到,获得积分20
7秒前
小不点点发布了新的文献求助10
8秒前
追风少年完成签到 ,获得积分10
8秒前
9秒前
9秒前
诚心的醉卉完成签到,获得积分10
9秒前
tzy6665完成签到,获得积分10
10秒前
向上发布了新的文献求助10
13秒前
15秒前
kongkong完成签到,获得积分20
15秒前
16秒前
心落失完成签到,获得积分10
16秒前
小不点点完成签到,获得积分10
17秒前
17秒前
缓慢的翅膀完成签到,获得积分10
18秒前
西门吹雪9527完成签到,获得积分10
18秒前
赵峰完成签到,获得积分10
18秒前
脑洞疼应助向上采纳,获得10
19秒前
美丽谷蕊完成签到,获得积分10
19秒前
艺术大师完成签到,获得积分10
20秒前
华仔应助tier3采纳,获得10
21秒前
Tian完成签到,获得积分10
21秒前
21秒前
22秒前
lengyue发布了新的文献求助10
22秒前
共享精神应助orange采纳,获得10
22秒前
自然天思发布了新的文献求助10
22秒前
三颗板牙完成签到,获得积分10
22秒前
团团关注了科研通微信公众号
22秒前
VirgoYn完成签到,获得积分10
23秒前
林林完成签到 ,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011