A deep learning model for depression detection based on MFCC and CNN generated spectrogram features

光谱图 Mel倒谱 计算机科学 水准点(测量) 特征提取 人工智能 鉴定(生物学) 特征(语言学) 语音识别 情态动词 机器学习 语言学 哲学 植物 化学 大地测量学 高分子化学 生物 地理
作者
Arnab Kumar Das,Ruchira Naskar
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105898-105898 被引量:6
标识
DOI:10.1016/j.bspc.2023.105898
摘要

Depression is one of the leading forms of mental health issues encountered by individuals of diverse age groups today worldwide. Like any other mental health concerns, depression too poses diagnostic challenges for medical practitioners and clinical experts, given obvious social reservations and lack of awareness and acceptance in the society. Since long researchers have been looking for methods to identify symptoms of depression among individuals from their speech and responses, by utilizing automation systems and computers. In this paper, we propose an audio based depression detection method, which relies on neural networks for audio spectrogram based feature extraction as well as classification between speech/response patterns of depressed vs. non-depressed persons. We adopt a multi-modal approach in our work, by combining Mel-Frequency Cepstral Coefficients (MFCC) features, as well as Spectrogram features extracted from an audio file, by a novel CNN network. Our CNN model demonstrates optimized residual blocks and the "glorot uniform" kernel initializer. The proposed method's performance is assessed in both multi-modal and multi-feature trials. We show our results on standard benchmark datasets DAIC-WOZ and MODMA, which provide repositories of questionnaire and patient responses, relevant in identification of depressive symptoms. We have also tested our model on standard emotion recognition audio dataset, RAVDESS. The proposed model achieves detection accuracy of over 90% in DAIC-WOZ and MODMA, and over 85% in RAVDESS, which is proven to surpass the present state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇咔咔发布了新的文献求助10
刚刚
jack完成签到,获得积分10
2秒前
DX120210165完成签到,获得积分10
2秒前
3秒前
RMgX完成签到,获得积分10
3秒前
希望天下0贩的0应助yj采纳,获得10
3秒前
ZHEN完成签到,获得积分20
5秒前
SDNUDRUG完成签到,获得积分10
5秒前
6秒前
星辰大海应助dsaifjs采纳,获得10
6秒前
小鹤完成签到,获得积分10
6秒前
6秒前
lzq1116发布了新的文献求助10
7秒前
无聊的听寒完成签到 ,获得积分10
7秒前
Xu发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
成硕发布了新的文献求助30
9秒前
啊啊啊发布了新的文献求助10
11秒前
小鹤发布了新的文献求助10
11秒前
月地花开发布了新的文献求助10
12秒前
丰盛的煎饼应助WNL采纳,获得10
13秒前
孟伟完成签到,获得积分10
14秒前
14秒前
18秒前
donfern发布了新的文献求助10
18秒前
19秒前
Lucas应助月地花开采纳,获得10
19秒前
慕青应助嗑瓜子传奇采纳,获得10
20秒前
21秒前
zy发布了新的文献求助10
22秒前
乐乐应助Diamond采纳,获得10
23秒前
飞快的怀寒完成签到,获得积分10
24秒前
李理发布了新的文献求助10
24秒前
24秒前
yj发布了新的文献求助10
26秒前
26秒前
Vivian完成签到,获得积分10
26秒前
正在下雨发布了新的文献求助10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260