A deep learning model for depression detection based on MFCC and CNN generated spectrogram features

光谱图 Mel倒谱 计算机科学 水准点(测量) 特征提取 人工智能 鉴定(生物学) 特征(语言学) 语音识别 情态动词 机器学习 语言学 哲学 植物 化学 大地测量学 高分子化学 生物 地理
作者
Arnab Kumar Das,Ruchira Naskar
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105898-105898 被引量:23
标识
DOI:10.1016/j.bspc.2023.105898
摘要

Depression is one of the leading forms of mental health issues encountered by individuals of diverse age groups today worldwide. Like any other mental health concerns, depression too poses diagnostic challenges for medical practitioners and clinical experts, given obvious social reservations and lack of awareness and acceptance in the society. Since long researchers have been looking for methods to identify symptoms of depression among individuals from their speech and responses, by utilizing automation systems and computers. In this paper, we propose an audio based depression detection method, which relies on neural networks for audio spectrogram based feature extraction as well as classification between speech/response patterns of depressed vs. non-depressed persons. We adopt a multi-modal approach in our work, by combining Mel-Frequency Cepstral Coefficients (MFCC) features, as well as Spectrogram features extracted from an audio file, by a novel CNN network. Our CNN model demonstrates optimized residual blocks and the "glorot uniform" kernel initializer. The proposed method's performance is assessed in both multi-modal and multi-feature trials. We show our results on standard benchmark datasets DAIC-WOZ and MODMA, which provide repositories of questionnaire and patient responses, relevant in identification of depressive symptoms. We have also tested our model on standard emotion recognition audio dataset, RAVDESS. The proposed model achieves detection accuracy of over 90% in DAIC-WOZ and MODMA, and over 85% in RAVDESS, which is proven to surpass the present state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星发布了新的文献求助10
刚刚
刚刚
4秒前
8R60d8给ambitiouslu的求助进行了留言
5秒前
JamesPei应助ravenye采纳,获得30
5秒前
山槐完成签到,获得积分10
6秒前
8秒前
王佳怡完成签到,获得积分10
8秒前
刘欣靓完成签到,获得积分10
9秒前
hbvyjnn发布了新的文献求助10
9秒前
9秒前
星星完成签到,获得积分10
10秒前
明理的忆之完成签到,获得积分10
10秒前
14秒前
理想三寻完成签到,获得积分10
16秒前
zx598376321完成签到,获得积分10
17秒前
敬业乐群发布了新的文献求助10
18秒前
cnspower驳回了Ava应助
20秒前
20秒前
兔兔要睡觉完成签到,获得积分10
21秒前
辛勤誉完成签到 ,获得积分10
23秒前
aq22完成签到 ,获得积分10
24秒前
脑洞疼应助lvlv采纳,获得20
24秒前
烙饼完成签到,获得积分10
25秒前
25秒前
春春完成签到 ,获得积分10
25秒前
present发布了新的文献求助10
27秒前
123455完成签到,获得积分10
27秒前
29秒前
巴山郎完成签到,获得积分10
30秒前
32秒前
33秒前
NexusExplorer应助7号采纳,获得10
35秒前
天天快乐应助present采纳,获得10
35秒前
现代的bb完成签到,获得积分10
35秒前
35秒前
浩二发布了新的文献求助10
36秒前
54zxy完成签到,获得积分10
37秒前
37秒前
义气莫茗完成签到 ,获得积分10
37秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225595
求助须知:如何正确求助?哪些是违规求助? 4397219
关于积分的说明 13686133
捐赠科研通 4261786
什么是DOI,文献DOI怎么找? 2338712
邀请新用户注册赠送积分活动 1336095
关于科研通互助平台的介绍 1292013