A deep learning model for depression detection based on MFCC and CNN generated spectrogram features

光谱图 Mel倒谱 计算机科学 水准点(测量) 特征提取 人工智能 鉴定(生物学) 特征(语言学) 语音识别 情态动词 机器学习 生物 哲学 植物 语言学 化学 高分子化学 地理 大地测量学
作者
Arnab Kumar Das,Ruchira Naskar
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105898-105898 被引量:23
标识
DOI:10.1016/j.bspc.2023.105898
摘要

Depression is one of the leading forms of mental health issues encountered by individuals of diverse age groups today worldwide. Like any other mental health concerns, depression too poses diagnostic challenges for medical practitioners and clinical experts, given obvious social reservations and lack of awareness and acceptance in the society. Since long researchers have been looking for methods to identify symptoms of depression among individuals from their speech and responses, by utilizing automation systems and computers. In this paper, we propose an audio based depression detection method, which relies on neural networks for audio spectrogram based feature extraction as well as classification between speech/response patterns of depressed vs. non-depressed persons. We adopt a multi-modal approach in our work, by combining Mel-Frequency Cepstral Coefficients (MFCC) features, as well as Spectrogram features extracted from an audio file, by a novel CNN network. Our CNN model demonstrates optimized residual blocks and the "glorot uniform" kernel initializer. The proposed method's performance is assessed in both multi-modal and multi-feature trials. We show our results on standard benchmark datasets DAIC-WOZ and MODMA, which provide repositories of questionnaire and patient responses, relevant in identification of depressive symptoms. We have also tested our model on standard emotion recognition audio dataset, RAVDESS. The proposed model achieves detection accuracy of over 90% in DAIC-WOZ and MODMA, and over 85% in RAVDESS, which is proven to surpass the present state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lixm发布了新的文献求助10
2秒前
vergegung关注了科研通微信公众号
2秒前
超级哑铃完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
HAI发布了新的文献求助10
3秒前
3秒前
汉堡包应助清新的烤鸡采纳,获得30
3秒前
4秒前
4秒前
林子青发布了新的文献求助20
4秒前
4秒前
bobopoi发布了新的文献求助10
5秒前
柚C美式完成签到 ,获得积分10
5秒前
6秒前
7秒前
红糖发糕完成签到 ,获得积分10
8秒前
风趣白秋发布了新的文献求助10
9秒前
apathy发布了新的文献求助10
10秒前
10秒前
llll完成签到,获得积分10
10秒前
10秒前
淡然天问发布了新的文献求助30
10秒前
朱事顺利完成签到,获得积分10
10秒前
11秒前
MailkMonk发布了新的文献求助10
11秒前
12秒前
chua1212123发布了新的文献求助10
13秒前
斯文败类应助欧阳采纳,获得10
14秒前
小科发布了新的文献求助10
14秒前
14秒前
15秒前
Alicia发布了新的文献求助200
15秒前
量子星尘发布了新的文献求助10
16秒前
fire发布了新的文献求助10
16秒前
17秒前
17秒前
bobopoi完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457