A deep learning model for depression detection based on MFCC and CNN generated spectrogram features

光谱图 Mel倒谱 计算机科学 水准点(测量) 特征提取 人工智能 鉴定(生物学) 特征(语言学) 语音识别 情态动词 机器学习 生物 哲学 植物 语言学 化学 高分子化学 地理 大地测量学
作者
Arnab Kumar Das,Ruchira Naskar
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:90: 105898-105898 被引量:9
标识
DOI:10.1016/j.bspc.2023.105898
摘要

Depression is one of the leading forms of mental health issues encountered by individuals of diverse age groups today worldwide. Like any other mental health concerns, depression too poses diagnostic challenges for medical practitioners and clinical experts, given obvious social reservations and lack of awareness and acceptance in the society. Since long researchers have been looking for methods to identify symptoms of depression among individuals from their speech and responses, by utilizing automation systems and computers. In this paper, we propose an audio based depression detection method, which relies on neural networks for audio spectrogram based feature extraction as well as classification between speech/response patterns of depressed vs. non-depressed persons. We adopt a multi-modal approach in our work, by combining Mel-Frequency Cepstral Coefficients (MFCC) features, as well as Spectrogram features extracted from an audio file, by a novel CNN network. Our CNN model demonstrates optimized residual blocks and the "glorot uniform" kernel initializer. The proposed method's performance is assessed in both multi-modal and multi-feature trials. We show our results on standard benchmark datasets DAIC-WOZ and MODMA, which provide repositories of questionnaire and patient responses, relevant in identification of depressive symptoms. We have also tested our model on standard emotion recognition audio dataset, RAVDESS. The proposed model achieves detection accuracy of over 90% in DAIC-WOZ and MODMA, and over 85% in RAVDESS, which is proven to surpass the present state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arnold发布了新的文献求助10
1秒前
在九月完成签到 ,获得积分10
1秒前
selfevidbet发布了新的文献求助30
1秒前
通~发布了新的文献求助10
1秒前
靓仔完成签到,获得积分10
1秒前
妙手回春板蓝根完成签到,获得积分10
1秒前
2秒前
11完成签到,获得积分10
3秒前
1111完成签到,获得积分10
3秒前
777完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
4秒前
4秒前
sun应助leave采纳,获得20
4秒前
4秒前
5秒前
5秒前
Loooong应助小房子采纳,获得10
6秒前
6秒前
云_123完成签到,获得积分10
7秒前
hf发布了新的文献求助10
7秒前
7秒前
赫连烙完成签到,获得积分10
7秒前
小二郎应助整齐小猫咪采纳,获得10
8秒前
领导范儿应助愤怒的源智采纳,获得10
8秒前
李来仪发布了新的文献求助10
8秒前
wisteety发布了新的文献求助10
8秒前
刘老师完成签到 ,获得积分10
8秒前
8秒前
8秒前
shulei发布了新的文献求助10
9秒前
糟糕的冷雪完成签到,获得积分10
9秒前
大模型应助杰森斯坦虎采纳,获得10
9秒前
典雅的如南完成签到 ,获得积分10
10秒前
小马甲应助无限的隶采纳,获得10
10秒前
饱满板栗完成签到 ,获得积分10
10秒前
Can完成签到,获得积分10
10秒前
10秒前
参上发布了新的文献求助10
11秒前
叫滚滚发布了新的文献求助10
11秒前
xiaowu发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762