Early Detection of Pancreatic Cancer: Opportunities Provided by Cancer-induced Paraneoplastic Phenomena and Artificial Intelligence

医学 胰腺癌 癌症 无症状的 磁共振成像 放射科 病理 内科学 肿瘤科
作者
Wei‐Chih Liao
出处
期刊:Journal of Cancer Research and Practice [Medknow Publications]
卷期号:10 (4): 129-133
标识
DOI:10.4103/ejcrp.ejcrp-d-23-00002
摘要

Abstract Objective: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer, with a 5-year survival rate of only 11%. Surgery is the only potential cure for PDAC, but approximately 85% of patients present with unresectable tumors at diagnosis. The difficulty in early detection is attributed to the fact that early PDACs cause few or nonspecific symptoms and are frequently obscure or even invisible in imaging studies such as computed tomography (CT). This review aims to briefly summarize the status of screening/surveillance for PDAC and elaborate on the potential windows of opportunity for early detection through PDAC-induced paraneoplastic phenomena and artificial intelligence (AI)-augmented image analysis. Data Sources: Relevant studies and review articles were searched in PubMed. Study Selection: Studies and articles on human subjects were selected. Results: Surveillance for high-risk individuals with imaging-based tools (endoscopic ultrasound and magnetic resonance image) is now advocated, whereas screening for asymptomatic general populations is not warranted at present. Paraneoplastic syndromes, including pancreatic cancer-associated diabetes and cachexia, are prevalent in PDAC patients and may provide windows of opportunity for early detection. S100A9 and galectin-3 are novel PDAC-derived factors mediating pancreatic cancer-associated diabetes and have shown promise in facilitating the early detection of PDAC. Novel computer-aided detection tools based on AI technologies, including deep learning and radiomic analysis with machine learning, have achieved accurate detection and might supplement human interpretation to improve the sensitivity for early PDAC on CT images. Conclusion: Novel blood-based biomarkers and AI-augmented image analysis may be complementary and hold promise for the early detection of PDAC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gym完成签到,获得积分10
刚刚
1秒前
2秒前
yang发布了新的文献求助10
3秒前
3秒前
深海鳕鱼完成签到,获得积分10
3秒前
bigxianyu发布了新的文献求助10
3秒前
任无施完成签到 ,获得积分10
4秒前
5秒前
6秒前
帕金森完成签到,获得积分10
6秒前
6秒前
zwl发布了新的文献求助10
7秒前
鸣蜩阿六发布了新的文献求助10
7秒前
9秒前
科研通AI5应助复杂谷蕊采纳,获得30
9秒前
12秒前
13秒前
zzzcubed发布了新的文献求助10
13秒前
酷酷小子发布了新的文献求助10
13秒前
14秒前
不倦应助qzj采纳,获得10
15秒前
mascot0111完成签到,获得积分10
15秒前
蒋俊杰发布了新的文献求助10
20秒前
清风明月完成签到,获得积分10
20秒前
AH完成签到,获得积分10
21秒前
Xxanny应助只想梳油头采纳,获得30
23秒前
28秒前
29秒前
归尘发布了新的文献求助10
32秒前
危机的绯发布了新的文献求助20
32秒前
32秒前
Jasper应助宇文青寒采纳,获得10
33秒前
紫不语完成签到,获得积分10
34秒前
36秒前
36秒前
fwda1000完成签到 ,获得积分10
36秒前
阿达应助qzj采纳,获得10
37秒前
悦耳的惜海完成签到,获得积分10
39秒前
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3573779
求助须知:如何正确求助?哪些是违规求助? 3143615
关于积分的说明 9453013
捐赠科研通 2845188
什么是DOI,文献DOI怎么找? 1564067
邀请新用户注册赠送积分活动 732085
科研通“疑难数据库(出版商)”最低求助积分说明 718851