已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recent Achievements in Organic Reactions in MeCN

计算机科学 化学
作者
Tongtong Xing,Guizhi Zhai,Linna Wu,Xiaofen Wang,Zechao Wang
标识
DOI:10.1002/9783527841943.ch2
摘要

Chapter 2 Recent Achievements in Organic Reactions in MeCN Tongtong Xing, Tongtong Xing Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorGuizhi Zhai, Guizhi Zhai Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorLinna Wu, Linna Wu Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorXiaofen Wang, Xiaofen Wang Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorZechao Wang, Zechao Wang Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this author Tongtong Xing, Tongtong Xing Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorGuizhi Zhai, Guizhi Zhai Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorLinna Wu, Linna Wu Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorXiaofen Wang, Xiaofen Wang Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this authorZechao Wang, Zechao Wang Zhengzhou University, Henan Institute of Advanced Technology, Division of Molecular Catalysis & Synthesis, No.100 Science Avenue, Zhengzhou, 450001 P. R. ChinaSearch for more papers by this author Book Editor(s):Xiao-Feng Wu, Xiao-Feng Wu Dalian Nat. Laboratory for Clean Energy, Dalian, 116023 Liaoning, ChinaSearch for more papers by this authorFeng Wang, Feng Wang Dalian Institute of Chemical Physics, Chinese Academy of Science, 457, Zhongshan Road, Dalian, 116023 ChinaSearch for more papers by this authorZhiping Yin, Zhiping Yin Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212013 ChinaSearch for more papers by this authorLiang-nian He, Liang-nian He Nankai University, No.94, Weijin Road, Tianjin, 300071 ChinaSearch for more papers by this author First published: 08 March 2024 https://doi.org/10.1002/9783527841943.ch2 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Acetonitrile, a colorless liquid, is highly volatile and has a special odor similar to ether. It has excellent solvent properties and can dissolve various organic, inorganic, and gaseous substances. It can undergo many chemical reactions and is used to prepare many typical nitrogen-containing compounds, making it an important organic intermediate. Acetonitrile can be used as a solvent for the synthesis of vitamin A, cortisone, carboamine drugs, and their intermediates, as well as an active medium solvent for the preparation of vitamin B1 and amino acids. Based on the diversity of acetonitrile in participating in chemical reactions, this chapter will introduce recent achievements in organic reactions in acetonitrile from the following three aspects: acetonitrile in transition metal-catalyzed reactions without radicals involved; acetonitrile in transition-metal-free catalyzed reactions without radicals involved; acetonitrile in C–X bond formation with radicals involved. References Robles , H. ( 2014 ). Encyclopedia of Toxicology , 3 e, 40 – 42 . Elsevier Inc. 10.1016/B978-0-12-386454-3.00624-2 Google Scholar Amoore , J.E. and Hautala , E. ( 1983 ). J. Appl. Toxicol. 3 : 272 – 290 . 10.1002/jat.2550030603 CASPubMedWeb of Science®Google Scholar Boschloo , G. and Hagfeldt , A. ( 2009 ). Acc. Chem. Res. 42 : 1819 – 1826 . 10.1021/ar900138m CASPubMedWeb of Science®Google Scholar Pearson , J.D. ( 2004 ). Encyclopedia of Biological Chemistry , 398 – 403 . Elsevier Inc. 10.1016/B0-12-443710-9/00321-5 Google Scholar Yang , Y. ( 2016 ). Side Reactions in Peptide Synthesis , 311 – 322 . Elsevier B.V. 10.1016/B978-0-12-801009-9.00014-8 Google Scholar S. Creager , Handbook of Electrochemistry , 2007 , 57 - 72 . Elsevier Inc. Google Scholar Fleming , F.F. , Yao , L. , Ravikumar , P.C. et al. ( 2010 ). J. Med. Chem. 53 : 7902 – 7917 . 10.1021/jm100762r CASPubMedWeb of Science®Google Scholar (a) Hoff , B.H. ( 2018 ). Synthesis 50 : 2824 – 2852 . 10.1055/s-0036-1589535 CASWeb of Science®Google Scholar (b) Bagal , D.B. and Bhanage , B.M. ( 2015 ). Adv. Synth. Catal. 357 : 883 – 900 . 10.1002/adsc.201400940 CASWeb of Science®Google Scholar Fan , L. and Ozerov , O.V. ( 2005 ). Chem. Commun. 4450 – 4452 . 10.1039/b505778g CASPubMedWeb of Science®Google Scholar Chakraborty , S. , Patel , Y.J. , Krause , J.A. , and Guan , H. ( 2013 ). Angew. Chem. Int. Ed. 52 : 7523 – 7526 . 10.1002/anie.201302613 CASPubMedWeb of Science®Google Scholar Peck , C.L. , Nekvinda , J. , and Santos , W.L. ( 2020 ). Chem. Commun. 26 : 10313 . 10.1039/D0CC03563G Google Scholar Kawauchi , D. , Ueda , H. , and Tokuyama , H. ( 2019 ). Eur. J. Org. Chem. 10 : 2056 – 2060 . 10.1002/ejoc.201900088 Google Scholar Yan , F. , Huang , Z. , Du , C.-X. et al. ( 2021 ). J. Catal. 395 : 188 – 194 . 10.1016/j.jcat.2021.01.003 CASWeb of Science®Google Scholar Cao , J. , Lv , D. , Yu , F. et al. ( 2021 ). Org. Lett. 23 : 3184 – 3189 . 10.1021/acs.orglett.1c00898 CASPubMedWeb of Science®Google Scholar Cheng , Q. , Zhang , F. , Cai , Y. et al. ( 2018 ). Angew. Chem. Int. Ed. 57 : 2134 – 2138 . 10.1002/anie.201711873 CASPubMedWeb of Science®Google Scholar Andrus , M.B. and Zhou , Z. ( 2002 ). JACS 124 : 8806 – 8807 . 10.1021/ja026266i CASPubMedWeb of Science®Google Scholar Lyle , M.P.A. and Wilson , P.D. ( 2006 ). Org. Biomol. Chem. 4 : 41 – 43 . 10.1039/B513374M CASPubMedWeb of Science®Google Scholar Kirillova , M.V. , Kirillov , A.M. , Mandelli , D. et al. ( 2010 ). J. Catal. 272 : 9 – 17 . 10.1016/j.jcat.2010.03.017 CASWeb of Science®Google Scholar Marx , S. , Kleist , W. , and Baiker , A. ( 2011 ). J. Catal. 281 : 76 – 87 . 10.1016/j.jcat.2011.04.004 CASWeb of Science®Google Scholar Liu , C. , Zhang , Q. , Li , H. et al. ( 2016 ). Chem. Eur. J. 22 : 6208 – 6212 . 10.1002/chem.201600107 CASPubMedWeb of Science®Google Scholar Yang , Y. , Zhong , W. , Nie , B. et al. ( 2017 ). J. Organomet. Chem. 853 : 136 – 142 . 10.1016/j.jorganchem.2017.10.034 CASWeb of Science®Google Scholar Engelmann , X. , Malik , D.D. , Corona , T. et al. ( 2019 ). Angew. Chem. Int. Ed. 58 : 4012 – 4016 . 10.1002/anie.201812758 CASPubMedWeb of Science®Google Scholar Zhang , Q. , Zheng , M. , Song , G. et al. ( 2019 ). Asian J. Organomet. Chem. 8 : 1824 – 1826 . 10.1002/ajoc.201900391 CASWeb of Science®Google Scholar Anandababu , K. , Muthuramalingam , S. , Velusamy , M. , and Mayilmurugan , R. ( 2020 ). Catal. Sci. Technol. 10 : 2540 – 2548 . 10.1039/C9CY02601K CASWeb of Science®Google Scholar Horvat , M. and Iskra , J. ( 2022 ). Green Chem. 24 : 2073 – 2081 . 10.1039/D1GC04416H CASWeb of Science®Google Scholar Ando , K. , Takaba , C. , and Kodama , M. ( 2022 ). J. Organomet. Chem. 87 : 9723 – 9728 . 10.1021/acs.joc.2c00763 CASGoogle Scholar Kong , H.-H. , Pan , H.-L. , and Ding , M.-W. ( 2018 ). J. Organomet. Chem. 83 : 12921 – 12930 . 10.1021/acs.joc.8b01984 CASGoogle Scholar Zalomaeva , O.V. , Evtushok , V.Y. , Ivanchikova , I.D. et al. ( 2020 ). Inorg. Chem. 59 : 10634 – 10649 . 10.1021/acs.inorgchem.0c01084 CASPubMedWeb of Science®Google Scholar Zhou , P. , Huang , L. , Jiang , H. et al. ( 2010 ). J. Organomet. Chem. 75 : 8279 – 8282 . 10.1021/jo101554r CASGoogle Scholar Jiang , H. , Ji , X. , Li , Y. et al. ( 2011 ). Org. Biomol. Chem. 9 : 5358 – 5361 . 10.1039/c1ob05440f CASPubMedWeb of Science®Google Scholar Wu , T. , Mu , X. , and Liu , G. ( 2011 ). Angew. Chem. Int. Ed. 50 : 12578 – 12581 . 10.1002/anie.201104575 CASPubMedWeb of Science®Google Scholar Fuentes , J.A. and Clarke , M.L. ( 2008 ). Synletter 17 : 2579 – 2582 . Google Scholar Snelders , D.J.M. , Kunna , K. , Müller , C. et al. ( 2010 ). Tetrahedron: Asymmetry 21 : 1411 – 1420 . 10.1016/j.tetasy.2010.04.037 CASWeb of Science®Google Scholar Zhu , K. , Shaver , M.P. , and Thomas , S.P. ( 2016 ). Chem. Sci. 7 : 3031 – 3035 . 10.1039/C5SC04471E CASPubMedWeb of Science®Google Scholar Cannon , K.A. , Geuther , M.E. , Kelly , C.K. et al. ( 2011 ). Organometallics 30 : 4067 – 4073 . 10.1021/om2003706 CASWeb of Science®Google Scholar Li , X.-D. , Xia , S.-M. , Chen , K.-H. et al. ( 2018 ). Green Chem. 20 : 4853 – 4858 . 10.1039/C8GC02280A CASWeb of Science®Google Scholar Ito , M. , Itazaki , M. , and Nakazawa , H. ( 2016 ). ChemCatChem 8 : 1 – 4 . 10.1002/cctc.201501371 Google Scholar Shi , J. , Li , L. , Shan , C. et al. ( 2021 ). JACS 143 : 10530 – 10536 . 10.1021/jacs.1c04389 CASPubMedWeb of Science®Google Scholar Qian , X. , Auffrant , A. , Felouat , A. , and Gosmini , C. ( 2011 ). Angew. Chem. Int. Ed. 50 : 10402 – 10405 . 10.1002/anie.201104390 CASPubMedWeb of Science®Google Scholar Zhai , Y. , Chen , X. , Zhou , W. et al. ( 2017 ). J. Organomet. Chem. 82 : 4964 – 4969 . 10.1021/acs.joc.7b00493 CASGoogle Scholar Sun , M. , Chen , J.-F. , Chen , S. , and Li , C. ( 2019 ). Org. Lett. 21 : 1278 – 1282 . 10.1021/acs.orglett.8b04030 CASPubMedWeb of Science®Google Scholar Zhao , M. , Zhang , W. , and Shen , Z. ( 2015 ). J. Organomet. Chem. 80 : 8868 – 8873 . 10.1021/acs.joc.5b01419 CASGoogle Scholar Anka-Lufford , L.L. , Huihui , K.M.M. , Gower , N.J. et al. ( 2016 ). Chem. Eur. J. 22 : 11564 – 11567 . 10.1002/chem.201602668 CASPubMedWeb of Science®Google Scholar Liu , B. , Liu , M. , Li , Q. et al. ( 2020 ). Org. Biomol. Chem. 18 : 6108 – 6114 . 10.1039/D0OB00485E CASPubMedWeb of Science®Google Scholar Singh , R. , Allam , B.K. , Singh , N. et al. ( 2015 ). Adv. Synth. Catal. 357 : 1181 – 1186 . 10.1002/adsc.201400983 CASWeb of Science®Google Scholar Huang , W.-Y. , Lu , C.-H. , Ghorai , S. et al. ( 2020 ). JACS 142 : 15276 – 15281 . 10.1021/jacs.0c08283 CASPubMedWeb of Science®Google Scholar Yang , Q. , Lei , X. , Yin , Z. et al. ( 2019 ). Synthesis 51 : 538 – 544 . 10.1055/s-0037-1610629 CASWeb of Science®Google Scholar Bhowmik , A. , Yadav , M. , and Fernandes , R.A. ( 2020 ). Org. Biomol. Chem. 18 : 2447 – 2458 . 10.1039/D0OB00244E CASPubMedWeb of Science®Google Scholar Lamb , K.N. , Squitieri , R.A. , Chintala , S.R. et al. ( 2017 ). Chem. Eur. J. 23 : 11843 – 11855 . 10.1002/chem.201701630 CASPubMedWeb of Science®Google Scholar Bai , C. , Guo , H. , Liu , X. et al. ( 2021 ). J. Organomet. Chem. 86 : 12664 – 12675 . 10.1021/acs.joc.1c01194 CASGoogle Scholar Veltri , L. , Russo , P. , Prestia , T. et al. ( 2020 ). J. Catal. 386 : 53 – 59 . 10.1016/j.jcat.2020.03.026 CASWeb of Science®Google Scholar Bayanati , M. , Parizadeh , N. , Nematpour , M. et al. ( 2020 ). J. Sulfur Chem. 42 : 121 – 130 . 10.1080/17415993.2020.1820010 Google Scholar Sarkar , D. , Rout , N. , Ghosh , M.K. et al. ( 2017 ). J. Organomet. Chem. 82 : 9012 – 9022 . 10.1021/acs.joc.7b01332 CASGoogle Scholar Shen , Y. , Wu , X.-X. , Chen , S. et al. ( 2018 ). Chem. Commun. 54 : 2256 – 2259 . 10.1039/C8CC00489G CASPubMedWeb of Science®Google Scholar Yang , J. , Shen , Y. , Lim , Y.J. , and Yoshikai , N. ( 2018 ). Chem. Sci. 9 : 6928 – 6934 . 10.1039/C8SC02074D CASPubMedWeb of Science®Google Scholar Nematpour , M. , Dastjerdi , H.F. , and Rabbani , M.M. ( 2022 ). Lett. Org. Chem. 19 : 34 – 40 . 10.2174/1570178618666210920112141 CASGoogle Scholar Ma , X. , Meng , S. , Zhang , X. et al. ( 2020 ). Beilstein J. Org. Chem. 16 : 1225 – 1233 . 10.3762/bjoc.16.106 CASPubMedWeb of Science®Google Scholar Chen , X. , Shatskiy , A. , Liu , J.-Q. et al. ( 2021 ). Chem. Asian J. 16 : 30 – 33 . 10.1002/asia.202001126 CASPubMedWeb of Science®Google Scholar Zhu , W. , Cai , G. , and Ma , D. ( 2005 ). Org. Lett. 7 : 5545 – 5548 . 10.1021/ol0513692 CASPubMedWeb of Science®Google Scholar Ma , S. and Lu , L. ( 2005 ). J. Organomet. Chem. 70 : 7629 – 7633 . 10.1021/jo050878e CASGoogle Scholar Chen , D. , Timmons , C. , Wei , H.-X. , and Li , G. ( 2003 ). J. Organomet. Chem. 68 : 5742 – 5745 . 10.1021/jo030098a CASGoogle Scholar Bowman , R.K. and Johnson , J.S. ( 2004 ). J. Organomet. Chem. 69 : 8537 – 8540 . 10.1021/jo0485536 CASGoogle Scholar Guin , A. , Gaykar , R.N. , Bhattacharjee , S. , and Biju , A.T. ( 2019 ). J. Organomet. Chem. 84 : 12692 – 12699 . 10.1021/acs.joc.9b02198 CASGoogle Scholar Satham , L. and Namboothiri , I.N.N. ( 2018 ). J. Organomet. Chem. 83 : 9471 – 9477 . 10.1021/acs.joc.8b00917 CASGoogle Scholar Wang , H. , Xi , Z. , Huang , S. et al. ( 2021 ). J. Organomet. Chem. 86 : 4932 – 4943 . 10.1021/acs.joc.0c02768 CASGoogle Scholar Xia , H.-D. , Zhang , Y.-D. , Wang , Y.-H. , and Zhang , C. ( 2018 ). Org. Lett. 20 : 4052 – 4056 . 10.1021/acs.orglett.8b01615 CASPubMedWeb of Science®Google Scholar Wang , X. , Wang , S.-Y. , and Ji , S.-J. ( 2014 ). J. Organomet. Chem. 79 : 8577 – 8583 . 10.1021/jo501143m CASGoogle Scholar Xu , J.-K. , Li , S.-J. , Wang , H.-Y. et al. ( 2017 ). Chem. Commun. 53 : 1708 – 1711 . 10.1039/C6CC09311F CASPubMedWeb of Science®Google Scholar Stephens , D. , Zhang , Y. , Cormier , M. et al. ( 2013 ). Chem. Commun. 49 : 6558 – 6560 . 10.1039/c3cc42854k CASPubMedWeb of Science®Google Scholar Shaabani , A. , Ghadari , R. , Ghasemi , S. et al. ( 2009 ). J. Organomet. Chem. 11 : 956 – 959 . CASGoogle Scholar Shaabani , A. , Ghadari , R. , Sarvary , A. , and Rezayan , A.H. ( 2009 ). J. Organomet. Chem. 74 : 4372 – 4374 . 10.1021/jo9005427 CASGoogle Scholar Park , K. , Heo , Y. , and Lee , S. ( 2013 ). Org. Lett. 15 : 3322 – 3325 . 10.1021/ol401358t CASPubMedWeb of Science®Google Scholar Oberhauser , T. ( 1997 ). J. Organomet. Chem. 62 : 4504 – 4506 . 10.1021/jo9622993 CASGoogle Scholar Katritzky , A.R. , Tala , S.R. , Abo-Dya , N.E. et al. ( 2009 ). J. Organomet. Chem. 74 : 7165 – 7167 . 10.1021/jo900853s CASGoogle Scholar Wang , Y. , Aleiwi , B.A. , Wang , Q. , and Kurosu , M. ( 2012 ). Org. Lett. 14 : 4910 – 4913 . 10.1021/ol3022337 CASPubMedWeb of Science®Google Scholar Medel , R. , Monterde , M.I. , Plumet , J. , and Rojas , J.K. ( 2005 ). J. Organomet. Chem. 70 : 735 – 738 . 10.1021/jo0402576 CASGoogle Scholar Verniest , G. , Van Hende , E. , Surmont , R. , and De Kimpe , N. ( 2006 ). Org. Lett. 8 : 4767 – 4770 . 10.1021/ol061720z CASPubMedWeb of Science®Google Scholar Gu , S.-X. , Du , J.-W. , Ju , X.-L. , and Chen , Q.-P. ( 2014 ). Org. Process Res. Dev. 18 : 552 – 554 . 10.1021/op500038s CASGoogle Scholar Cheng , P. , Wang , W. , Wang , L. et al. ( 2019 ). Tetrahedron Lett. 60 : 1408 – 1412 . 10.1016/j.tetlet.2019.04.042 CASWeb of Science®Google Scholar Chen , Z. , Zhou , Q. , Chen , Q. et al. ( 2020 ). Org. Biomol. Chem. 18 : 8677 – 8685 . 10.1039/D0OB01864C CASGoogle Scholar Garrido-Castro , A.F. , Salaverri , N. , Maestro , M.C. , and Alemań , J. ( 2019 ). Org. Lett. 21 : 5295 – 5300 . 10.1021/acs.orglett.9b01911 CASPubMedWeb of Science®Google Scholar Rostoll-Berenguer , J. , Martín-López , M. , Blay , G. et al. ( 2022 ). Organomet. Chem. 87 : 9343 – 9356 . 10.1021/acs.joc.2c01139 CASGoogle Scholar Xu , N.-X. , Li , B.-X. , Wang , C. , and Uchiyama , M. ( 2020 ). Angew. Chem. Int. Ed. 59 : 10639 – 10644 . 10.1002/anie.202003070 CASPubMedWeb of Science®Google Scholar Zhu , N. , Wang , T. , Ge , L. et al. ( 2017 ). Org. Lett. 19 : 4718 – 4721 . 10.1021/acs.orglett.7b01969 CASPubMedWeb of Science®Google Scholar Abdulla , H.O. , Scaringi , S. , Amin , A.A. et al. ( 2020 ). Adv. Synth. Catal. 362 : 2150 – 2154 . 10.1002/adsc.201901424 Web of Science®Google Scholar Zhang , P. , Gao , Y. , Zhang , L. et al. ( 2016 ). Adv. Synth. Catal. 358 : 138 – 142 . 10.1002/adsc.201500667 CASWeb of Science®Google Scholar Chen , C. , Bao , Y. , Zhao , J. , and Zhu , B. ( 2019 ). Chem. Commun. 55 : 14697 – 14700 . 10.1039/C9CC08124K CASPubMedWeb of Science®Google Scholar Fan , T. , Liu , Y. , Jiang , C. et al. ( 2021 ). Org. Biomol. Chem. 19 : 6609 – 6612 . 10.1039/D1OB01045J CASPubMedWeb of Science®Google Scholar Liu , L. , He , Y.-H. , and Guan , Z. ( 2019 ). Tetrahedron 75 : 130716 . PubMedWeb of Science®Google Scholar Gong , X. , Chen , J. , Liu , J. , and Wu , J. ( 2017 ). Org. Chem. Front. 4 : 2221 – 2225 . 10.1039/C7QO00634A CASWeb of Science®Google Scholar Gao , Y.-C. , Huang , Z.-B. , Xu , L. et al. ( 2019 ). Org. Biomol. Chem. 17 : 2279 – 2286 . 10.1039/C8OB03191F CASPubMedWeb of Science®Google Scholar Zhang , J. , Yang , M. , Liu , J.-B. et al. ( 2020 ). Chem. Commun. 56 : 3225 – 3228 . 10.1039/D0CC00375A CASPubMedWeb of Science®Google Scholar Tu , X. , Huang , J. , Xie , W. et al. ( 2021 ). Org. Chem. Front. 8 : 1789 – 1794 . 10.1039/D0QO01551B CASWeb of Science®Google Scholar Chen , H. , Liu , Z. , Lv , Y. et al. ( 2017 ). Angew. Chem. Int. Ed. 56 : 15411 – 15415 . 10.1002/anie.201708197 CASPubMedWeb of Science®Google Scholar Tu , D. , Luo , J. , and Jiang , C. ( 2018 ). Chem. Commun. 54 : 2514 – 2517 . 10.1039/C8CC00267C CASPubMedWeb of Science®Google Scholar Guan , H. , Sun , S. , Mao , Y. et al. ( 2018 ). Angew. Chem. Int. Ed. 57 : 11413 – 11417 . 10.1002/anie.201806434 CASPubMedWeb of Science®Google Scholar Su , Y. , Cao , L. , Shi , Y. et al. ( 2019 ). Synthesis 51 : 2331 – 2338 . 10.1055/s-0037-1610868 CASWeb of Science®Google Scholar Shi , J.-L. , Wang , Y. , Wang , Z. et al. ( 2020 ). Chem. Commun. 56 : 5002 – 5005 . 10.1039/D0CC01720E CASPubMedWeb of Science®Google Scholar Green Solvents in Organic Synthesis ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QSY完成签到,获得积分10
刚刚
know完成签到,获得积分10
1秒前
北北完成签到 ,获得积分10
3秒前
3秒前
江欢发布了新的文献求助10
3秒前
beyonder完成签到,获得积分10
3秒前
古人完成签到,获得积分10
6秒前
6秒前
6秒前
小二郎应助beyonder采纳,获得10
6秒前
在水一方应助11楼阿水采纳,获得10
7秒前
沐紫心完成签到 ,获得积分10
7秒前
荷兰香猪发布了新的文献求助10
8秒前
yyz完成签到,获得积分10
8秒前
111完成签到 ,获得积分10
8秒前
11秒前
12秒前
昵称已挥发完成签到,获得积分10
12秒前
Akim应助洋洋采纳,获得10
12秒前
14秒前
华仔应助综述王采纳,获得10
17秒前
18秒前
18秒前
奥黛丽悟空完成签到,获得积分10
20秒前
852应助铃儿采纳,获得10
21秒前
木鸽子发布了新的文献求助10
21秒前
在水一方应助炙热晓露采纳,获得10
21秒前
22秒前
会飞的猪发布了新的文献求助10
23秒前
23秒前
rzheng5完成签到,获得积分10
25秒前
25秒前
科研通AI2S应助Hh采纳,获得10
26秒前
26秒前
27秒前
27秒前
斯文败类应助科研通管家采纳,获得10
28秒前
Lucas应助科研通管家采纳,获得10
28秒前
无花果应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526254
求助须知:如何正确求助?哪些是违规求助? 3106684
关于积分的说明 9281258
捐赠科研通 2804208
什么是DOI,文献DOI怎么找? 1539365
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709515