iNGNN-DTI: prediction of drug–target interaction with interpretable nested graph neural network and pretrained molecule models

判别式 计算机科学 机器学习 人工智能 图形 编码 一般化 人工神经网络 特征(语言学) 水准点(测量) 交互网络 集合(抽象数据类型) 模式识别(心理学) 理论计算机科学 语言学 哲学 数学 大地测量学 基因 程序设计语言 地理 数学分析 生物化学 化学
作者
Yan Sun,Yan Yi Li,Carson K. Leung,Pingzhao Hu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (3) 被引量:6
标识
DOI:10.1093/bioinformatics/btae135
摘要

Abstract Motivation Drug–target interaction (DTI) prediction aims to identify interactions between drugs and protein targets. Deep learning can automatically learn discriminative features from drug and protein target representations for DTI prediction, but challenges remain, making it an open question. Existing approaches encode drugs and targets into features using deep learning models, but they often lack explanations for underlying interactions. Moreover, limited labeled DTIs in the chemical space can hinder model generalization. Results We propose an interpretable nested graph neural network for DTI prediction (iNGNN-DTI) using pre-trained molecule and protein models. The analysis is conducted on graph data representing drugs and targets by using a specific type of nested graph neural network, in which the target graphs are created based on 3D structures using Alphafold2. This architecture is highly expressive in capturing substructures of the graph data. We use a cross-attention module to capture interaction information between the substructures of drugs and targets. To improve feature representations, we integrate features learned by models that are pre-trained on large unlabeled small molecule and protein datasets, respectively. We evaluate our model on three benchmark datasets, and it shows a consistent improvement on all baseline models in all datasets. We also run an experiment with previously unseen drugs or targets in the test set, and our model outperforms all of the baselines. Furthermore, the iNGNN-DTI can provide more insights into the interaction by visualizing the weights learned by the cross-attention module. Availability and implementation The source code of the algorithm is available at https://github.com/syan1992/iNGNN-DTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
清脆水卉完成签到,获得积分10
刚刚
1秒前
科研通AI6应助无所谓的啦采纳,获得10
1秒前
CipherSage应助无所谓的啦采纳,获得10
1秒前
爆米花应助无所谓的啦采纳,获得10
1秒前
斯文败类应助无所谓的啦采纳,获得10
1秒前
充电宝应助无所谓的啦采纳,获得10
1秒前
大个应助无所谓的啦采纳,获得10
1秒前
赘婿应助无所谓的啦采纳,获得10
1秒前
Ava应助无所谓的啦采纳,获得10
1秒前
普通市民完成签到 ,获得积分10
1秒前
科研通AI6应助无所谓的啦采纳,获得10
1秒前
Lucien完成签到,获得积分10
2秒前
陈小瑜完成签到,获得积分10
3秒前
Maykl发布了新的文献求助10
3秒前
5秒前
5秒前
Mandy完成签到 ,获得积分10
5秒前
慢慢人发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
爆米花应助liu采纳,获得10
6秒前
Zz发布了新的文献求助10
6秒前
y1j完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
大个应助Zz采纳,获得10
12秒前
12秒前
123完成签到 ,获得积分10
13秒前
14秒前
遨游的人发布了新的文献求助10
14秒前
禾页完成签到 ,获得积分10
15秒前
16秒前
Yuan发布了新的文献求助10
17秒前
好问题发布了新的文献求助10
17秒前
NexusExplorer应助临江仙采纳,获得10
17秒前
17秒前
Elite完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419649
求助须知:如何正确求助?哪些是违规求助? 4534895
关于积分的说明 14147178
捐赠科研通 4451527
什么是DOI,文献DOI怎么找? 2441782
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410617