iNGNN-DTI: prediction of drug–target interaction with interpretable nested graph neural network and pretrained molecule models

判别式 计算机科学 机器学习 人工智能 图形 编码 一般化 人工神经网络 特征(语言学) 水准点(测量) 交互网络 集合(抽象数据类型) 模式识别(心理学) 理论计算机科学 语言学 哲学 数学 大地测量学 基因 程序设计语言 地理 数学分析 生物化学 化学
作者
Yan Sun,Yan Yi Li,Carson K. Leung,Pingzhao Hu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (3) 被引量:6
标识
DOI:10.1093/bioinformatics/btae135
摘要

Abstract Motivation Drug–target interaction (DTI) prediction aims to identify interactions between drugs and protein targets. Deep learning can automatically learn discriminative features from drug and protein target representations for DTI prediction, but challenges remain, making it an open question. Existing approaches encode drugs and targets into features using deep learning models, but they often lack explanations for underlying interactions. Moreover, limited labeled DTIs in the chemical space can hinder model generalization. Results We propose an interpretable nested graph neural network for DTI prediction (iNGNN-DTI) using pre-trained molecule and protein models. The analysis is conducted on graph data representing drugs and targets by using a specific type of nested graph neural network, in which the target graphs are created based on 3D structures using Alphafold2. This architecture is highly expressive in capturing substructures of the graph data. We use a cross-attention module to capture interaction information between the substructures of drugs and targets. To improve feature representations, we integrate features learned by models that are pre-trained on large unlabeled small molecule and protein datasets, respectively. We evaluate our model on three benchmark datasets, and it shows a consistent improvement on all baseline models in all datasets. We also run an experiment with previously unseen drugs or targets in the test set, and our model outperforms all of the baselines. Furthermore, the iNGNN-DTI can provide more insights into the interaction by visualizing the weights learned by the cross-attention module. Availability and implementation The source code of the algorithm is available at https://github.com/syan1992/iNGNN-DTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助exersong采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
3秒前
4秒前
4秒前
ljf完成签到,获得积分20
4秒前
lezbj99发布了新的文献求助10
4秒前
小马甲应助kreatal采纳,获得10
5秒前
浮游应助JUSTs0so采纳,获得10
5秒前
杨丽发布了新的文献求助10
5秒前
jane发布了新的文献求助10
6秒前
6秒前
深情惜梦发布了新的文献求助10
7秒前
7秒前
兴奋蘑菇发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助50
9秒前
Mei完成签到,获得积分10
10秒前
赘婿应助辛勤笑旋采纳,获得10
10秒前
晚香玉发布了新的文献求助10
11秒前
kk子发布了新的文献求助10
13秒前
13秒前
kreatal完成签到,获得积分10
13秒前
CipherSage应助杨丽采纳,获得10
13秒前
13秒前
13秒前
深情惜梦发布了新的文献求助10
15秒前
15秒前
sxmt123456789发布了新的文献求助10
15秒前
16秒前
16秒前
kk子完成签到,获得积分10
16秒前
科研通AI6应助cds采纳,获得10
17秒前
17秒前
kreatal发布了新的文献求助10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447