iNGNN-DTI: prediction of drug–target interaction with interpretable nested graph neural network and pretrained molecule models

判别式 计算机科学 机器学习 人工智能 图形 编码 一般化 人工神经网络 特征(语言学) 水准点(测量) 交互网络 集合(抽象数据类型) 模式识别(心理学) 理论计算机科学 基因 生物化学 数学分析 哲学 语言学 数学 化学 程序设计语言 地理 大地测量学
作者
Yan Sun,Yan Yi Li,Carson K. Leung,Pingzhao Hu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (3) 被引量:6
标识
DOI:10.1093/bioinformatics/btae135
摘要

Abstract Motivation Drug–target interaction (DTI) prediction aims to identify interactions between drugs and protein targets. Deep learning can automatically learn discriminative features from drug and protein target representations for DTI prediction, but challenges remain, making it an open question. Existing approaches encode drugs and targets into features using deep learning models, but they often lack explanations for underlying interactions. Moreover, limited labeled DTIs in the chemical space can hinder model generalization. Results We propose an interpretable nested graph neural network for DTI prediction (iNGNN-DTI) using pre-trained molecule and protein models. The analysis is conducted on graph data representing drugs and targets by using a specific type of nested graph neural network, in which the target graphs are created based on 3D structures using Alphafold2. This architecture is highly expressive in capturing substructures of the graph data. We use a cross-attention module to capture interaction information between the substructures of drugs and targets. To improve feature representations, we integrate features learned by models that are pre-trained on large unlabeled small molecule and protein datasets, respectively. We evaluate our model on three benchmark datasets, and it shows a consistent improvement on all baseline models in all datasets. We also run an experiment with previously unseen drugs or targets in the test set, and our model outperforms all of the baselines. Furthermore, the iNGNN-DTI can provide more insights into the interaction by visualizing the weights learned by the cross-attention module. Availability and implementation The source code of the algorithm is available at https://github.com/syan1992/iNGNN-DTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌井完成签到,获得积分10
刚刚
微笑的若魔完成签到 ,获得积分10
1秒前
北城完成签到 ,获得积分10
1秒前
束玲玲完成签到,获得积分10
1秒前
江雁完成签到,获得积分10
3秒前
满天星辰独览完成签到 ,获得积分10
3秒前
3秒前
bee完成签到 ,获得积分10
3秒前
小宁完成签到,获得积分10
5秒前
hbj完成签到,获得积分10
5秒前
张一完成签到,获得积分10
8秒前
windmill完成签到,获得积分10
8秒前
赘婿应助David采纳,获得10
9秒前
CipherSage应助是我呀吼采纳,获得10
9秒前
倪好完成签到,获得积分10
12秒前
谦让汝燕完成签到,获得积分10
12秒前
14秒前
1234@完成签到 ,获得积分10
15秒前
雨相所至完成签到,获得积分10
15秒前
研友_8oYg4n完成签到,获得积分10
15秒前
和光同尘发布了新的文献求助20
15秒前
迷路凌柏完成签到 ,获得积分10
15秒前
16秒前
冬亦发布了新的文献求助10
17秒前
清脆迎曼应助小喜采纳,获得10
17秒前
机智毛豆完成签到,获得积分10
18秒前
18秒前
jzmulyl完成签到,获得积分10
18秒前
薛乎虚完成签到 ,获得积分10
18秒前
gaogao完成签到,获得积分10
19秒前
糖炒栗子完成签到,获得积分10
20秒前
汉堡包应助马前人采纳,获得10
20秒前
m李完成签到 ,获得积分10
20秒前
吴旭东发布了新的文献求助10
21秒前
21秒前
deluohaida完成签到,获得积分20
23秒前
科研小白完成签到,获得积分10
23秒前
23秒前
kyt完成签到 ,获得积分10
24秒前
cij123完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798