iNGNN-DTI: prediction of drug–target interaction with interpretable nested graph neural network and pretrained molecule models

判别式 计算机科学 机器学习 人工智能 图形 编码 一般化 人工神经网络 特征(语言学) 水准点(测量) 交互网络 集合(抽象数据类型) 模式识别(心理学) 理论计算机科学 语言学 哲学 数学 大地测量学 基因 程序设计语言 地理 数学分析 生物化学 化学
作者
Yan Sun,Yan Yi Li,Carson K. Leung,Pingzhao Hu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (3) 被引量:6
标识
DOI:10.1093/bioinformatics/btae135
摘要

Abstract Motivation Drug–target interaction (DTI) prediction aims to identify interactions between drugs and protein targets. Deep learning can automatically learn discriminative features from drug and protein target representations for DTI prediction, but challenges remain, making it an open question. Existing approaches encode drugs and targets into features using deep learning models, but they often lack explanations for underlying interactions. Moreover, limited labeled DTIs in the chemical space can hinder model generalization. Results We propose an interpretable nested graph neural network for DTI prediction (iNGNN-DTI) using pre-trained molecule and protein models. The analysis is conducted on graph data representing drugs and targets by using a specific type of nested graph neural network, in which the target graphs are created based on 3D structures using Alphafold2. This architecture is highly expressive in capturing substructures of the graph data. We use a cross-attention module to capture interaction information between the substructures of drugs and targets. To improve feature representations, we integrate features learned by models that are pre-trained on large unlabeled small molecule and protein datasets, respectively. We evaluate our model on three benchmark datasets, and it shows a consistent improvement on all baseline models in all datasets. We also run an experiment with previously unseen drugs or targets in the test set, and our model outperforms all of the baselines. Furthermore, the iNGNN-DTI can provide more insights into the interaction by visualizing the weights learned by the cross-attention module. Availability and implementation The source code of the algorithm is available at https://github.com/syan1992/iNGNN-DTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的土豆完成签到,获得积分10
1秒前
Life发布了新的文献求助30
1秒前
北陆小猫发布了新的文献求助10
2秒前
画家发布了新的文献求助30
2秒前
3秒前
dyd完成签到,获得积分10
3秒前
yck发布了新的文献求助10
3秒前
庭中踏雪来完成签到 ,获得积分10
6秒前
上官若男应助西子阳采纳,获得10
6秒前
6秒前
tqmx完成签到,获得积分10
7秒前
zho发布了新的文献求助10
7秒前
Rondab应助北陆小猫采纳,获得10
9秒前
田様应助zhaoyali采纳,获得10
9秒前
李霞发布了新的文献求助10
9秒前
Ngu完成签到,获得积分10
9秒前
河鲸发布了新的文献求助50
10秒前
10秒前
水何澹澹完成签到,获得积分0
11秒前
羽宇完成签到,获得积分10
11秒前
Rondab应助可可采纳,获得10
13秒前
zhangyu应助小新采纳,获得20
13秒前
Aaron发布了新的文献求助10
13秒前
慕青应助可乐采纳,获得10
14秒前
15秒前
健壮荠完成签到,获得积分10
15秒前
LIU发布了新的文献求助10
16秒前
zho关闭了zho文献求助
16秒前
NexusExplorer应助hyperthermal1采纳,获得10
16秒前
单薄店员发布了新的文献求助10
19秒前
茁壮成长的兰顺完成签到,获得积分10
20秒前
酷酷小海豚完成签到,获得积分20
21秒前
粥粥完成签到 ,获得积分10
22秒前
betty完成签到,获得积分10
24秒前
lian关注了科研通微信公众号
26秒前
HUIZHEV5完成签到,获得积分10
26秒前
乐观囧完成签到,获得积分10
27秒前
故意的仙人掌完成签到,获得积分10
28秒前
SciGPT应助酷酷小海豚采纳,获得10
28秒前
火星上的问儿完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070