SGLMDA: A Subgraph Learning-based Method for miRNA-disease Association Prediction

水准点(测量) 疾病 计算机科学 小RNA 计算生物学 机器学习 人工智能 生物 基因 遗传学 医学 地图学 地理 病理
作者
Cunmei Ji,Ning Yu,Yutian Wang,Jiancheng Ni,Chun-Hou Zheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1191-1201
标识
DOI:10.1109/tcbb.2024.3373772
摘要

MicroRNAs (miRNA) are endogenous non-coding RNAs, typically around 23 nucleotides in length. Many miRNAs have been founded to play crucial roles in gene regulation though post-transcriptional repression in animals. Existing studies suggest that the dysregulation of miRNA is closely associated with many human diseases. Discovering novel associations between miRNAs and diseases is essential for advancing our understanding of disease pathogenesis at molecular level. However, experimental validation is time-consuming and expensive. To address this challenge, numerous computational methods have been proposed for predicting miRNA-disease associations. Unfortunately, most existing methods face difficulties when applied to large-scale miRNA-disease complex networks. In this paper, we present a novel subgraph learning method named SGLMDA for predicting miRNA-disease associations. For miRNA-disease pairs, SGLMDA samples $K$ -hop subgraphs from the global heterogeneous miRNA-disease graph. It then introduces a novel subgraph representation algorithm based on Graph Neural Network (GNN) for feature extraction and prediction. Extensive experiments conducted on benchmark datasets demonstrate that SGLMDA can effectively and robustly predict potential miRNA-disease associations. Compared to other state-of-the-art methods, SGLMDA achieves superior prediction performance in terms of Area Under the Curve (AUC) and Average Precision (AP) values during 5-fold Cross-Validation (5CV) on benchmark datasets such as HMDD v2.0 and HMDD v3.2. Additionally, case studies on Colon Neoplasms and Triple-Negative Breast Cancer (TNBC) further underscore the predictive power of SGLMDA. The dataset and source code of SGLMDA are available at https://github.com/cunmeiji/SGLMDA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马明旋完成签到,获得积分10
1秒前
团团子发布了新的文献求助10
1秒前
ha完成签到,获得积分10
1秒前
1秒前
Cheryy完成签到,获得积分10
2秒前
Sophia发布了新的文献求助10
2秒前
2秒前
2秒前
咿呀咿呀发布了新的文献求助10
2秒前
LINCHEN完成签到,获得积分10
2秒前
2秒前
2秒前
852应助Awei采纳,获得10
3秒前
达达完成签到,获得积分10
4秒前
4秒前
华仔应助HWS采纳,获得10
5秒前
5秒前
renkemaomao发布了新的文献求助10
5秒前
科研通AI6应助无题采纳,获得10
6秒前
张迪发布了新的文献求助10
6秒前
包包包发布了新的文献求助10
6秒前
田様应助林深采纳,获得10
7秒前
科研通AI5应助雨眠采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
赘婿应助安乐采纳,获得10
7秒前
8秒前
赘婿应助肥波爱吃鱼采纳,获得10
8秒前
maomao发布了新的文献求助10
8秒前
8秒前
weimin完成签到,获得积分10
8秒前
热心飞雪完成签到,获得积分10
8秒前
9秒前
leslie发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
搞怪的访梦完成签到,获得积分10
9秒前
cy发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4875222
求助须知:如何正确求助?哪些是违规求助? 4164267
关于积分的说明 12916595
捐赠科研通 3921439
什么是DOI,文献DOI怎么找? 2152871
邀请新用户注册赠送积分活动 1171000
关于科研通互助平台的介绍 1074942