SGLMDA: A Subgraph Learning-based Method for miRNA-disease Association Prediction

水准点(测量) 疾病 计算机科学 小RNA 计算生物学 机器学习 人工智能 生物 基因 遗传学 医学 地图学 地理 病理
作者
Cunmei Ji,Ning Yu,Yutian Wang,Jiancheng Ni,Chun-Hou Zheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1191-1201
标识
DOI:10.1109/tcbb.2024.3373772
摘要

MicroRNAs (miRNA) are endogenous non-coding RNAs, typically around 23 nucleotides in length. Many miRNAs have been founded to play crucial roles in gene regulation though post-transcriptional repression in animals. Existing studies suggest that the dysregulation of miRNA is closely associated with many human diseases. Discovering novel associations between miRNAs and diseases is essential for advancing our understanding of disease pathogenesis at molecular level. However, experimental validation is time-consuming and expensive. To address this challenge, numerous computational methods have been proposed for predicting miRNA-disease associations. Unfortunately, most existing methods face difficulties when applied to large-scale miRNA-disease complex networks. In this paper, we present a novel subgraph learning method named SGLMDA for predicting miRNA-disease associations. For miRNA-disease pairs, SGLMDA samples $K$ -hop subgraphs from the global heterogeneous miRNA-disease graph. It then introduces a novel subgraph representation algorithm based on Graph Neural Network (GNN) for feature extraction and prediction. Extensive experiments conducted on benchmark datasets demonstrate that SGLMDA can effectively and robustly predict potential miRNA-disease associations. Compared to other state-of-the-art methods, SGLMDA achieves superior prediction performance in terms of Area Under the Curve (AUC) and Average Precision (AP) values during 5-fold Cross-Validation (5CV) on benchmark datasets such as HMDD v2.0 and HMDD v3.2. Additionally, case studies on Colon Neoplasms and Triple-Negative Breast Cancer (TNBC) further underscore the predictive power of SGLMDA. The dataset and source code of SGLMDA are available at https://github.com/cunmeiji/SGLMDA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张鱼小丸子完成签到,获得积分10
刚刚
Wen发布了新的文献求助10
1秒前
害羞向日葵完成签到 ,获得积分10
1秒前
VDC应助惜筠采纳,获得30
1秒前
Always62442发布了新的文献求助10
1秒前
multi发布了新的文献求助10
2秒前
完美世界应助kook采纳,获得10
2秒前
好样的完成签到,获得积分10
2秒前
3秒前
4秒前
xiaofu完成签到,获得积分10
6秒前
km完成签到,获得积分10
6秒前
myt发布了新的文献求助30
6秒前
无极微光应助十米采纳,获得20
6秒前
6秒前
CodeCraft应助小飞鼠采纳,获得10
6秒前
7秒前
盛夏如花发布了新的文献求助10
7秒前
7秒前
455发布了新的文献求助10
7秒前
dragon完成签到 ,获得积分10
7秒前
斯文败类应助烂漫耳机采纳,获得10
8秒前
渔落发布了新的文献求助10
8秒前
阳光水绿完成签到,获得积分10
8秒前
9秒前
我是狗发布了新的文献求助10
9秒前
黑白菜完成签到,获得积分10
9秒前
10秒前
Always62442完成签到,获得积分10
10秒前
凌L发布了新的文献求助10
10秒前
GH发布了新的文献求助10
10秒前
桐桐应助11采纳,获得40
10秒前
研友_nqvkOZ完成签到,获得积分10
11秒前
12138完成签到,获得积分10
11秒前
11秒前
背后含之完成签到,获得积分10
11秒前
共享精神应助木辛采纳,获得10
12秒前
12秒前
bqk完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836