SGLMDA: A Subgraph Learning-based Method for miRNA-disease Association Prediction

水准点(测量) 疾病 计算机科学 小RNA 计算生物学 机器学习 人工智能 生物 基因 遗传学 医学 地图学 地理 病理
作者
Cunmei Ji,Ning Yu,Yutian Wang,Jiancheng Ni,Chun-Hou Zheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1191-1201
标识
DOI:10.1109/tcbb.2024.3373772
摘要

MicroRNAs (miRNA) are endogenous non-coding RNAs, typically around 23 nucleotides in length. Many miRNAs have been founded to play crucial roles in gene regulation though post-transcriptional repression in animals. Existing studies suggest that the dysregulation of miRNA is closely associated with many human diseases. Discovering novel associations between miRNAs and diseases is essential for advancing our understanding of disease pathogenesis at molecular level. However, experimental validation is time-consuming and expensive. To address this challenge, numerous computational methods have been proposed for predicting miRNA-disease associations. Unfortunately, most existing methods face difficulties when applied to large-scale miRNA-disease complex networks. In this paper, we present a novel subgraph learning method named SGLMDA for predicting miRNA-disease associations. For miRNA-disease pairs, SGLMDA samples $K$ -hop subgraphs from the global heterogeneous miRNA-disease graph. It then introduces a novel subgraph representation algorithm based on Graph Neural Network (GNN) for feature extraction and prediction. Extensive experiments conducted on benchmark datasets demonstrate that SGLMDA can effectively and robustly predict potential miRNA-disease associations. Compared to other state-of-the-art methods, SGLMDA achieves superior prediction performance in terms of Area Under the Curve (AUC) and Average Precision (AP) values during 5-fold Cross-Validation (5CV) on benchmark datasets such as HMDD v2.0 and HMDD v3.2. Additionally, case studies on Colon Neoplasms and Triple-Negative Breast Cancer (TNBC) further underscore the predictive power of SGLMDA. The dataset and source code of SGLMDA are available at https://github.com/cunmeiji/SGLMDA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zf完成签到,获得积分10
刚刚
Vincent发布了新的文献求助10
1秒前
qq发布了新的文献求助30
1秒前
1秒前
1秒前
无花果应助嗷嗷采纳,获得10
2秒前
MOMO发布了新的文献求助10
3秒前
99发布了新的文献求助10
3秒前
踏实谷蓝完成签到 ,获得积分10
4秒前
Archy完成签到,获得积分10
4秒前
5秒前
5秒前
qq发布了新的文献求助10
6秒前
6秒前
丘比特应助不会游泳的鱼采纳,获得10
7秒前
奋斗的孤风关注了科研通微信公众号
7秒前
wisper发布了新的文献求助10
7秒前
8秒前
zhancon完成签到,获得积分10
9秒前
新闻联播发布了新的文献求助10
9秒前
乐乐应助肖静茹采纳,获得30
9秒前
9秒前
10秒前
11秒前
深情安青应助Ode采纳,获得10
11秒前
失眠成危完成签到,获得积分10
12秒前
LWJ发布了新的文献求助30
12秒前
kyrry完成签到,获得积分10
13秒前
无奈海菡发布了新的文献求助10
14秒前
陈艺鹏完成签到,获得积分10
14秒前
酷波er应助邢文瑞采纳,获得10
16秒前
16秒前
Akim应助pokexuejiao采纳,获得20
16秒前
17秒前
18秒前
科研通AI2S应助myy采纳,获得10
18秒前
19秒前
无奈海菡完成签到,获得积分10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459