清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SGLMDA: A Subgraph Learning-based Method for miRNA-disease Association Prediction

水准点(测量) 疾病 计算机科学 小RNA 计算生物学 机器学习 人工智能 生物 基因 遗传学 医学 地图学 地理 病理
作者
Cunmei Ji,Ning Yu,Yutian Wang,Jiancheng Ni,Chun-Hou Zheng
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 1191-1201
标识
DOI:10.1109/tcbb.2024.3373772
摘要

MicroRNAs (miRNA) are endogenous non-coding RNAs, typically around 23 nucleotides in length. Many miRNAs have been founded to play crucial roles in gene regulation though post-transcriptional repression in animals. Existing studies suggest that the dysregulation of miRNA is closely associated with many human diseases. Discovering novel associations between miRNAs and diseases is essential for advancing our understanding of disease pathogenesis at molecular level. However, experimental validation is time-consuming and expensive. To address this challenge, numerous computational methods have been proposed for predicting miRNA-disease associations. Unfortunately, most existing methods face difficulties when applied to large-scale miRNA-disease complex networks. In this paper, we present a novel subgraph learning method named SGLMDA for predicting miRNA-disease associations. For miRNA-disease pairs, SGLMDA samples $K$ -hop subgraphs from the global heterogeneous miRNA-disease graph. It then introduces a novel subgraph representation algorithm based on Graph Neural Network (GNN) for feature extraction and prediction. Extensive experiments conducted on benchmark datasets demonstrate that SGLMDA can effectively and robustly predict potential miRNA-disease associations. Compared to other state-of-the-art methods, SGLMDA achieves superior prediction performance in terms of Area Under the Curve (AUC) and Average Precision (AP) values during 5-fold Cross-Validation (5CV) on benchmark datasets such as HMDD v2.0 and HMDD v3.2. Additionally, case studies on Colon Neoplasms and Triple-Negative Breast Cancer (TNBC) further underscore the predictive power of SGLMDA. The dataset and source code of SGLMDA are available at https://github.com/cunmeiji/SGLMDA .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
影像大侠完成签到,获得积分10
10秒前
10秒前
星辰大海应助zzzzz采纳,获得10
15秒前
29秒前
33秒前
34秒前
老实的电源完成签到,获得积分10
34秒前
36秒前
40秒前
48秒前
独特的高山完成签到,获得积分10
51秒前
54秒前
科研通AI2S应助独特的高山采纳,获得10
58秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534396
求助须知:如何正确求助?哪些是违规求助? 4622351
关于积分的说明 14582594
捐赠科研通 4562615
什么是DOI,文献DOI怎么找? 2500270
邀请新用户注册赠送积分活动 1479809
关于科研通互助平台的介绍 1451002