光催化
材料科学
单层
吸附
空位缺陷
超晶格
催化作用
载流子
化学工程
纳米技术
光电子学
结晶学
物理化学
化学
有机化学
工程类
作者
Nam Hee Kwon,Jihye Park,Xiaoyan Jin,Sejun Kim,Hyungjun Kim,Seong‐Ju Hwang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-12-01
卷期号:17 (23): 23732-23745
被引量:12
标识
DOI:10.1021/acsnano.3c07566
摘要
Defect engineering provides an effective way to explore efficient nanostructured catalysts. Herein, we synthesize defect-regulated two-dimensional superlattices comprising interstratified holey g-C3N4 and TiO2 monolayers with tailorable interfacial coupling. Using this interfacial-coupling-controlled hybrid system, a strong interdependence among vacancy content, performance, and interfacial coupling was elucidated, offering key insights for the design of high-performance catalysts. The defect-optimized g-C3N4–TiO2 superlattice exhibited higher photocatalytic activity toward visible-light-induced N2 fixation (∼1.06 mmol g–1 h–1) than defect-unoptimized and disorderly assembled g-C3N4–TiO2 homologues. The high photocatalytic performance of g-C3N4–TiO2 was attributed to the hybridization-induced defect creation, facilitated hydrogenation of adsorbed nitrogen, and improvement in N2 adsorption and charge transport. A comparison of the defect-dependent photocatalytic activity of g-C3N4, g-C3N4 nanosheets, and g-C3N4–TiO2 revealed the presence of optimal defect content for improving photocatalytic performance and the continuous increase of hybridization impact with the defect content. Sophisticated mutual influence among defect, electronic coupling, and photocatalytic ability underscores the importance of defect fine control in exploring high-performance hybrid photocatalysts. Along with the DFT calculation, the excellent photocatalyst performance of defect-optimized g-C3N4–TiO2 can be ascribed to the promotion of the uphill *N hydrogenation step as well as to enhancement of N2 adsorption, charge transfer kinetics, and mass transports.
科研通智能强力驱动
Strongly Powered by AbleSci AI