离散化
数学
间断(语言学)
非线性系统
外推法
规范(哲学)
有限元法
应用数学
数学分析
数值分析
时间离散化
离散化误差
后向微分公式
连续特征的离散化
收敛速度
计算机科学
微分方程
常微分方程
频道(广播)
计算机网络
物理
量子力学
政治学
法学
热力学
搭配法
作者
Huaming Yi,Yanping Chen,Yang Wang,Yunqing Huang
标识
DOI:10.1016/j.amc.2022.127581
摘要
The article proposes and analyzes the optimal error estimates of a second-order backward difference formula (BDF2) numerical scheme for the semi-linear parabolic interface problems. The partially penalized immersed finite element (PPIFE) methods are used for the spatial discretization to resolve discontinuity of the diffusion coefficient across the interface. The classical extrapolation method is adopted to treat the nonlinear term, which effectively avoids the complicated numerical calculation of the nonlinearity. Our error analysis is based on the corresponding time-discrete system, which neatly splits the error into two parts: the temporal discretization error and the spatial discretization error. Since the spatial discretization error is independent of time step size τ, we can unconditionally derive the optimal error estimates in both L2 norm and semi-H1 norm, while previous works always require the coupling condition of time step and space size. Numerical experiments are given to confirm the theoretical analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI