阴极
材料科学
锂(药物)
热失控
过渡金属
热稳定性
电池(电)
氧化物
化学工程
电化学
化学
冶金
热力学
物理化学
电极
物理
工程类
内分泌学
催化作用
功率(物理)
医学
生物化学
作者
Xiao Li,Qingwen Gu,Bao Qiu,Chong Yin,Zhining Wei,Wen Wen,Yibin Zhang,Yuhuan Zhou,Han Gao,Haoyan Liang,Zhilong He,Minghao Zhang,Ying Shirley Meng,Zhaoping Liu
标识
DOI:10.1016/j.mattod.2022.09.013
摘要
Classical layered transition metal oxides have remained the preferred cathode materials for commercial lithium-ion batteries. Variation in the transition metal composition and local ordering can greatly affect the structure stability. In classical layered cathodes, high concentrations of electrochemically inert Mn elements usually act as a pillar to stabilize the structure. When excess amount of Li and Mn are present in the layered structure, the capacity of the Li-rich layered oxide (molar ratio of lithium over transition metal is larger than one by design) can exceed that expected from transition metal redox. However, the over lithiation in the classical layered structure results in safety issues, which remains challenging for the commercialization of Li-rich layered oxides. To characterize the safety performance of a series of Li-rich layered cathodes, we utilize differential scanning calorimeter and thermal gravimetric analysis; this is coupled with local structural changes using in situ temperature dependent synchrotron X-ray diffraction and X-ray adsorption spectroscopy. These methods demonstrate that the gradual decrease of the Mn–M (M = Ni, Co, Mn and Li) coordination number directly reduces structural stability and accelerates oxygen release. For safety characterization tests in practice, we evaluate the thermal runaway process through accelerating rate calorimeter in 1.0 Ah pouch cells to confirm this trend. Using the insights obtained in this work, we design a polymorphic composition to improve the thermal stability of Li-rich layered cathode material, which outperforms Ni-rich layered oxides in terms of both electrochemical and safety performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI