谐振器
小型化
探测器
光子学
光学
材料科学
光电子学
硅光子学
激光器
物理
纳米技术
作者
Yoav Hazan,Michael Nagli,Ahiad Levi,Amir Rosenthal
出处
期刊:Optics Letters
[The Optical Society]
日期:2022-10-10
卷期号:47 (21): 5660-5660
被引量:5
摘要
Silicon photonics holds promise for a new generation of ultrasound-detection technology, based on optical resonators, with unparalleled miniaturization levels, sensitivities, and bandwidths, creating new possibilities for minimally invasive medical devices. While existing fabrication technologies are capable of producing dense resonator arrays whose resonance frequency is pressure sensitive, simultaneously monitoring the ultrasound-induced frequency modulation of numerous resonators has remained a challenge. Conventional techniques, which are based on tuning a continuous wave laser to the resonator wavelength, are not scalable due to the wavelength disparity between the resonators, requiring a separate laser for each resonator. In this work, we show that the Q-factor and transmission peak of silicon-based resonators can also be pressure sensitive, exploit this phenomenon to develop a readout scheme based on monitoring the amplitude, rather than frequency, at the output of the resonators using a single-pulse source, and demonstrate its compatibility with optoacoustic tomography.
科研通智能强力驱动
Strongly Powered by AbleSci AI