亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surface integrity and material removal mechanism in fluid jet polishing of optical glass

抛光 磨料 材料科学 脆性 泥浆 粒子(生态学) 喷射(流体) 化学机械平面化 联轴节(管道) 复合材料 机械工程 机械 物理 工程类 海洋学 地质学
作者
Zhong-Chen Cao,Ming Wang,Shengqin Yan,Chenyao Zhao,Haitao Liu
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:311: 117798-117798 被引量:36
标识
DOI:10.1016/j.jmatprotec.2022.117798
摘要

Fluid jet polishing (FJP) is a promising technology that has been increasingly used in the superfinishing of complex optical lenses, mirrors, and molds on several materials. The influence mechanism of polishing parameters on the damage characteristics, element composition, and surface quality of optical glass was studied through a series of FJP experiments to achieve the high-efficiency and low-damage ultra-precision polishing requirements of optical components. A numerical model for FJP was developed based on computational fluid dynamics (CFD), and the effects of slurry pressure and particle size on the flow field and particle motion characteristics were studied combined with statistical theory. The brittle-ductile transition model and erosion model when abrasive particles eroded optical glass were established to obtain a better understanding of the material removal mechanism during FJP. The damage control strategy can be clarified according to the coupling relationship between the impact velocity and particle size of abrasive particles when radial and transverse cracks are generated in the optical glass. The experimental results verify that the established model can predict the material removal characteristics well. The simulation results also indicate that the erosion removal of the optical glass by abrasive particles is a completely ductile mode under the polishing experimental conditions in this study. The results can provide solid theoretical support for equipment upgrade and process optimization of FJP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
tamo完成签到,获得积分10
2秒前
4秒前
5秒前
7秒前
潮鸣完成签到 ,获得积分10
8秒前
NiceSunnyDay完成签到 ,获得积分10
10秒前
哈哈完成签到,获得积分10
11秒前
wzccc发布了新的文献求助10
12秒前
14秒前
3sigma发布了新的文献求助10
19秒前
20秒前
21秒前
香樟沐雪发布了新的文献求助10
26秒前
脑洞疼应助3sigma采纳,获得10
28秒前
昏睡的芒果完成签到,获得积分10
29秒前
潇洒莞完成签到 ,获得积分10
29秒前
30秒前
传奇3应助疯狂的凝云采纳,获得10
33秒前
深情安青应助香樟沐雪采纳,获得10
37秒前
大模型应助saywhy采纳,获得10
39秒前
3sigma完成签到,获得积分10
40秒前
浮游应助科研通管家采纳,获得10
41秒前
吴彦祖应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
吴彦祖应助科研通管家采纳,获得10
41秒前
51秒前
jjyy发布了新的文献求助10
55秒前
58秒前
1分钟前
1分钟前
一个冷漠无情的人完成签到,获得积分10
1分钟前
唠叨的妙梦完成签到,获得积分10
1分钟前
hx完成签到 ,获得积分10
1分钟前
leec完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498185
求助须知:如何正确求助?哪些是违规求助? 4595509
关于积分的说明 14449204
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481411
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438297