生物
转录组
转录因子
人口
表型
胚胎干细胞
电池类型
干细胞
细胞
细胞生物学
生物信息学
遗传学
基因表达
基因
医学
环境卫生
作者
Yiyuan Zhang,Yandong Zheng,Si Wang,Yanling Fan,Yanxia Ye,Yaobin Jing,Zunpeng Liu,Shanshan Yang,Muzhao Xiong,Kuan Yang,Jinghao Hu,Shanshan Che,Qun Chu,Moshi Song,Guang‐Hui Liu,Weiqi Zhang,Shuai Ma,Jing Qu
出处
期刊:Protein & Cell
[Springer Science+Business Media]
日期:2022-09-06
被引量:31
标识
DOI:10.1093/procel/pwac038
摘要
Abstract Aging poses a major risk factor for cardiovascular diseases, the leading cause of death in the aged population. However, the cell type-specific changes underlying cardiac aging are far from being clear. Here, we performed single-nucleus RNA-sequencing analysis of left ventricles from young and aged cynomolgus monkeys to define cell composition changes and transcriptomic alterations across different cell types associated with age. We found that aged cardiomyocytes underwent a dramatic loss in cell numbers and profound fluctuations in transcriptional profiles. Via transcription regulatory network analysis, we identified FOXP1, a core transcription factor in organ development, as a key downregulated factor in aged cardiomyocytes, concomitant with the dysregulation of FOXP1 target genes associated with heart function and cardiac diseases. Consistently, the deficiency of FOXP1 led to hypertrophic and senescent phenotypes in human embryonic stem cell-derived cardiomyocytes. Altogether, our findings depict the cellular and molecular landscape of ventricular aging at the single-cell resolution, and identify drivers for primate cardiac aging and potential targets for intervention against cardiac aging and associated diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI