FedAAR: A Novel Federated Learning Framework for Animal Activity Recognition with Wearable Sensors

计算机科学 稳健性(进化) 可穿戴计算机 机器学习 人工智能 加速度计 活动识别 精确性和召回率 联合学习 深度学习 全球定位系统 人机交互 分布式计算 嵌入式系统 电信 生物化学 化学 基因 操作系统
作者
Axiu Mao,Endai Huang,Haiming Gan,Kai Liu
出处
期刊:Animals [MDPI AG]
卷期号:12 (16): 2142-2142 被引量:9
标识
DOI:10.3390/ani12162142
摘要

Deep learning dominates automated animal activity recognition (AAR) tasks due to high performance on large-scale datasets. However, constructing centralised data across diverse farms raises data privacy issues. Federated learning (FL) provides a distributed learning solution to train a shared model by coordinating multiple farms (clients) without sharing their private data, whereas directly applying FL to AAR tasks often faces two challenges: client-drift during local training and local gradient conflicts during global aggregation. In this study, we develop a novel FL framework called FedAAR to achieve AAR with wearable sensors. Specifically, we devise a prototype-guided local update module to alleviate the client-drift issue, which introduces a global prototype as shared knowledge to force clients to learn consistent features. To reduce gradient conflicts between clients, we design a gradient-refinement-based aggregation module to eliminate conflicting components between local gradients during global aggregation, thereby improving agreement between clients. Experiments are conducted on a public dataset to verify FedAAR's effectiveness, which consists of 87,621 two-second accelerometer and gyroscope data. The results demonstrate that FedAAR outperforms the state-of-the-art, on precision (75.23%), recall (75.17%), F1-score (74.70%), and accuracy (88.88%), respectively. The ablation experiments show FedAAR's robustness against various factors (i.e., data sizes, communication frequency, and client numbers).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
3秒前
星海妖魂发布了新的文献求助10
4秒前
狂野书易发布了新的文献求助10
5秒前
852应助细腻的灵槐采纳,获得30
5秒前
5秒前
5秒前
Candice应助易天采纳,获得10
6秒前
6秒前
liushuoshuoliu完成签到,获得积分10
9秒前
17完成签到,获得积分20
9秒前
幻幻发布了新的文献求助10
9秒前
10秒前
tayyy发布了新的文献求助10
11秒前
高兴的又菡完成签到,获得积分10
12秒前
kissinger完成签到,获得积分10
12秒前
英姑应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
4444应助科研通管家采纳,获得10
13秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得30
14秒前
4444应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
yyk应助科研通管家采纳,获得10
14秒前
煤炭不甜应助科研通管家采纳,获得20
14秒前
Owen应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
16秒前
双黄应助科研通管家采纳,获得10
16秒前
16秒前
4444应助科研通管家采纳,获得10
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264886
求助须知:如何正确求助?哪些是违规求助? 2904855
关于积分的说明 8331749
捐赠科研通 2575234
什么是DOI,文献DOI怎么找? 1399714
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353